【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y,的对应值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -4 | -4 | 0 | 8 | … |
(1)根据上表填空:
①抛物线与x轴的交点坐标是_________和_________;
②抛物线经过点(-3,_________);
(2)试确定抛物线y=ax2+bx+c的解析式.
【答案】(1)①(-2,0),(1,0);②8;(2)所求抛物线解析式为y=2x2+2x-4.
【解析】试题分析: (1)①根据表格中函数值y=0即可得到与x轴的交点坐标;
②观察表格可知抛物线的对称轴为x=,由此可知(2,8)与(-3,8)关于对称轴对称,从而可得;
(2)依题意设抛物线解析式为y=a(x+2)(x-1),代入点(0,-4)即可求得.
试题解析:(1)①观察表格可知当y=0时,x=-2或x=1,所以抛物线与x轴的交点坐标是(-2,0),(1,0),
故答案为:(-2,0),(1,0);
②观察表格可知抛物线的对称轴为x=,由此可知(2,8)与(-3,8)关于对称轴对称,所以抛物线经过(-3,8),
故答案为:8;
(2)依题意设抛物线解析式为y=a(x+2)(x-1),
由点(0,-4)在函数图象上,得-4=a(0+2)×(0-1),
解得a=2,
∴y=2(x+2)(x-1),
即所求抛物线解析式为y=2x2+2x-4.
科目:初中数学 来源: 题型:
【题目】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x的函数关系式为________.
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图1和图2是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:
(1)此次调查的学生人数为___;
(2)条形统计图中存在错误的是___(填A. B.C中的一个),并在图中加以改正;
(3)在图2中补画条形统计图中不完整的部分;
(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠BAD=100°,∠BCD=70°,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校为了了解七年学生跳绳情况,从七年级学生中随机抽查了50名学生进行1分钟跳绳测试,并对测试结果统计后绘制了如下不完整统计图表,请根据图表中的信息解答下列问题.
组别 | 次数 | 频数(人) | 百分比 |
1 | 60≤x<90 | 5 | 10% |
2 | 90≤x<120 | 5 | b |
3 | 120≤x<150 | 18 | 36% |
4 | 150≤x<180 | a | c |
5 | 180≤x<210 | 2 | 4% |
合计 | 50 | 1 |
(1)直接写出a= ,b= ,c= ;
(2)请补全频数分布直方图;
(3)若该校七年级共有学生400人,请你估计该校七年级学生跳绳次数在90≤x<150范围的学生约有多少人?(
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AE⊥BD于C,AB=DE,∠A=30°,∠E=50°,F是DE的中点,则∠DBF的度数等于( )
A.10°B.20°C.30°D.40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E,F,G,H分别是边AB,BC,CD,DA的中点.
(1)判断四边形EFGH的形状,并证明你的结论;
(2)当BD,AC满足什么条件时,四边形EFGH是正方形.(不要求证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com