精英家教网 > 初中数学 > 题目详情
写一个在-2和-1之间的无理数
 
分析:先画出数轴,然后根据在-2和-1之间的无理数即可解答.
解答:解:在-2和-1之间的无理数是-
2
,-
3

精英家教网
点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.
例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).
请你用上面的思想和方法对下面关于圆的问题进行研究:
(1)如图1,在圆O所在平面上,放置一条直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些?(直接写出两个即可)
(2)如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之;
(3)如图3,其中AB是圆O的直径,AC是弦,D是
ABC
的中点,弦DE精英家教网⊥AB于点F.请找出点C和点E重合的条件,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.
已知:
在△ABD和△ACE中,AB=AC,AD=AE,BD=CE

求证:
∠1=∠2

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABE和△ACD中,给出以下四个论断:
(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)AD⊥DC,AE⊥BE.
以其中三个论断为题设,填入下面的“已知”栏中,一个论断为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1、图2分别是两个相同正方形、正六边形,其中一个正多边形的顶点在另一个正多边形外接圆圆心O处.
(1)求图1中,重叠部分面积与阴影部分面积之比;
(2)求图2中,重叠部分面积与阴影部分面积之比(直接出答案);
(3)根据前面探索和图3,你能否将本题推广到一般的正n边形情况,(n为大于2的偶数)若能,写出推广问题和结论;若不能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC的三个顶点坐标如表:
(x、y) (2x,2y)
A(2,1) A′(4,2)
B(4,3) B′
(8,6)
(8,6)
C(5,1) C′
(10,2)
(10,2)
(1)将上表补充完整,并在直角坐标系中,画出△A′B′C′.
(2)观察△ABC与△A′B′C′,写出与这两个三角形有关的一个正确的结论.
(3)直接写出△ABC与△A′B′C′的周长之比和面积之比.

查看答案和解析>>

同步练习册答案