分析 延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.
解答 解:延长CB交PQ于点D.
∵MN∥PQ,BC⊥MN,
∴BC⊥PQ.
∵自动扶梯AB的坡度为1:2,
∴$\frac{BD}{AD}$=$\frac{1}{2}$.
设BD=k(米),AD=2k(米),则AB=$\sqrt{5}$k(米).
∵AB=5$\sqrt{5}$(米),
∴k=5,
∴BD=5(米),AD=10(米).
在Rt△CDA中,∠CDA=90゜,∠CAD=42°,
∴CD=AD•tan∠CAD=10×$\sqrt{3}$=10$\sqrt{3}$(米),
∴BC=10$\sqrt{3}$-5(米).
点评 本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.
科目:初中数学 来源: 题型:选择题
A. | x+x2=x3 | B. | 2x3÷x2=x | C. | ($\frac{x}{2}$)3=$\frac{{x}^{3}}{8}$ | D. | (a+4)(a+3)=a2+12 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2-1=-2 | B. | $\sqrt{8}-\sqrt{2}$=$\sqrt{6}$ | C. | x2•x3=x6 | D. | (-4x4)÷(2x2)=-2x2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2$\sqrt{5}$ | B. | $\sqrt{5}$ | C. | $\frac{4\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com