精英家教网 > 初中数学 > 题目详情
观察等式找规律,灵活运用巧计算.
①22-12=(2-1)(a+1);
②32-12=(3+b)(3+1);
③42-12=(c-1)(4+1);

(1)求出等式中的a、b、c;
(2)根据你发现的规律,直接写出第n个等式(用含有n的等式表示);
(3)运用你发现的规律求(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
20122
)(1-
1
20132
)
的值.
分析:(1)根据所给的式子,分别进行计算,即可求出a,b,c的值;
(2)根据所给的式子,找出规律,第几个数是第几个数加1的平方减1的平方就等于第几个数加1减1乘以第几个数加1加1,即可得出第n个等式;
(3)把括号中的数进行通分,再根据平方差公式进行计算,然后约分,即可得出答案.
解答:解:(1)∵22-12=(2-1)(a+1),
∴3=a+1,
∴a=2;
∵32-12=(3+b)(3+1),
∴2=3+b.
∴b=-1;
∵42-12=(c-1)(4+1),
∴3=c-1,
∴c=4;
(2)根据(1)可得:
(n+1)2-12=[(n+1)-1][(n+1)+1].
(3)原式=(
22-1
22
)(
32-1
32
)(
42-1
42
)…(
20122-1
20122
)(
20132-1
20132
)=
(2-1)(2+1)
22
×
(3-1)(3+1)
32
×
(4-1)(4+1)
42
×…×
(2012-1)(2012+1)
20122
×
(2013-1)(2013+1)
20132
=
1×3
22
×
2×4
32
×
3×5
42
×…×
2011×2013
20122
×
2012×2014
20132
=
1
2
×
2014
2013
=
1007
2013
点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是本题的关键,用到的知识点是、通分、约分、平方差公式.
练习册系列答案
相关习题

同步练习册答案