【题目】按要求解一元二次方程
(1)4x2﹣8x+1=0(配方法)
(2)7x(5x+2)=6(5x+2)(因式分解法)
(3)3x2+5(2x+1)=0(公式法)
(4)x2﹣2x﹣8=0.
(5)(6x-1)2=25;
【答案】()x1=1+,x2=1﹣;(2)x1=﹣,x2=;(3)x1=,x2=;(4)x1=4,x2=﹣2;(5)x1=1, x2
【解析】
(1)首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式;
(2)方程移项变形后,采用提公因式法,可得方程因式分解的形式,即可求解;
(3)方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于0,故利用求根公式可得出方程的两个解;
(4)方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可;
(5)两边开方,即可得出两个一元一次方程,求出方程的解即可.
解:(1)4x2﹣8x+1=0(配方法)
移项得,x2﹣2x=﹣ ,
配方得,x2﹣2x+1=﹣+1,
(x﹣1)2= ,
∴x﹣1=±
∴x1=1+,x2=1﹣;
(2)7x(5x+2)=6(5x+2)(因式分解法)
7x(5x+2)﹣6(5x+2)=0,
(5x+2)(7x﹣6)=0,
∴5x+2=0,7x﹣6=0,
∴x1=﹣,x2=;
(3)3x2+5(2x+1)=0(公式法)
整理得,3x2+10x+5=0
∵a=3,b=10,c=5,b2﹣4ac=100﹣60=40,
∴x= ,
∴x1=,x2=;
(4)x2﹣2x﹣8=0.
(x-4)(x+2)=0,
∴x-4=0,x+2=0,
∴x1=4,x2=-2;
(5)(6x-1)2=25
两边开方,得6x-1=±5
∴x1=1, x2.
科目:初中数学 来源: 题型:
【题目】今年四月份,某校在孝感市争创“全国文明城市” 活动中,组织全体学生参加了“弘扬孝感文化,争做文明学生”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成 六个等级,并绘制成如下两幅不完整的统计图表.
请根据图表提供的信息,解答下列问题:
(1)本次抽样调查样本容量为 ,表中: , ;扇形统计图中, 等级对应的圆心角 等于 度;(4分=1分+1分+1分)
(2)该校决定从本次抽取的 等级学生(记为甲、乙、丙、丁)中,随机选择 名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.
(1)求证:△AFG∽△DFC;
(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(图4).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b与x轴、y轴分别交于点A,B,且OA,OB的长(OA > OB)是方程x2-10x +24=0的两个根,P(m,n)是第一象限内直线y=kx+b上的一个动点(点P不与点A,B重合).
(1)求直线AB的解析式;
(2)C是x轴上一点,且OC=2,求△ACP的面积S与m之间的函数关系式;
(3)在x轴上是否存在点Q,使以A,B,Q为顶点的三角形是等腰三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c (a≠0)的图象如图所示,对称轴是x=-1.下列结论:①ab>0;②b2>4ac;③a-b+2c<0;④8a+c<0.其中正确的是( )
A. ③④ B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.
(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,抛物线与x轴交于点A,C(点A在点C的左侧),与y轴交于点B,顶点为D.点Q为线段BC的三等分点(靠近点C).
(1)点M为抛物线对称轴上一点,点E为对称轴右侧抛物线上的点且位于第一象限,当的周长最小时,求面积的最大值;
(2)在(1)的条件下,当的面积最大时,过点E作轴,垂足为N,将线段CN绕点C顺时针旋转90°得到点N,再将点N向上平移个单位长度.得到点P,点G在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H,使点D,P,G,H构成菱形.若存在,请直接写出点H的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com