分析 由二次函数的性质得D(4,4),再解方程-$\frac{4}{9}$(x-4)2+4=0得到A(1,0),B(7,0),则AB=6,接着利用抛物线的对称性得到DA=DB,AF=BF=3,于是利用勾股定理可计算出BD=5,利用BE:BD=1:5可得BE=1,然后证明△ADP∽△BPE,利用相似得到AP:1=5:(6-AP),则解方程求出AP即可得到P点坐标.
解答 解:抛物线解析式为y=-$\frac{4}{9}$(x-4)2+4,则D(4,4),
当y=0时,-$\frac{4}{9}$(x-4)2+4=0,解得x1=1,x2=7,则A(1,0),B(7,0),AB=6,
∵直线PF为抛物线对称轴,
∴DA=DB,AF=BF=3,
在Rt△BDF中,BD=$\sqrt{{4}^{2}+{3}^{2}}$=5,
∴AD=BD=5,
∵BE:BD=1:5,
∴BE=1,
∵∠DPB=∠ADP+∠DAP,即∠DPE+∠EPB=∠ADP+∠DAP,
而∠DPE=∠DAB,
∴∠EPB=∠ADP,
∵DA=DB,
∴∠DAP=∠EBP,
∴△ADP∽△BPE,
∴AP:BE=AD:BP,即AP:1=5:(6-AP),解得AP=1或AP=5,
∴P点坐标为(2,0)或(6,0).
点评 本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程的问题.也考查了相似三角形的判定与性质.
科目:初中数学 来源: 题型:选择题
A. | x1=0,x2=4 | B. | x1=1,x2=5 | C. | x1=1,x2=-5 | D. | x1=-1,x2=5 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (4x-3y)(3y-4x) | B. | (-4x+3y)(4x+3y) | C. | (-4x+3y)(-4x-3y) | D. | (4x+3y)(4x-3y) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com