精英家教网 > 初中数学 > 题目详情

钝角三角形中,一个锐角比另一个锐角的3倍多6°,求较小的这个锐角的度数范围.

答案:略
解析:

0°到21°之间


提示:

设较小锐角为xx(3x6)90


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某兴趣小组在学习了勾股定理之后提出:“锐(钝)角三角形有没有类似于勾股定理的结论”的问题.首先定义了一个新的概念:如图(1)△ABC中,M是BC的中点,P是射线MA上的点,设
APPM
=k,若∠BPC=90°,则称k为勾股比.

(1)如图(1),过B、C分别作中线AM的垂线,垂足为E、D.求证:CD=BE.
(2)①如图(2),当=1,且AB=AC时,AB2+AC2=
2.5
2.5
BC2(填一个恰当的数).
②如图(1),当k=1,△ABC为锐角三角形,且AB≠AC时,①中的结论还成立吗?若成立,请写出证明过程;若不成立,也请说明理由;
③对任意锐角或钝角三角形,如图(1)、(3),请用含勾股比k的表达式直接表示AB2+AC2与BC2的关系(写出锐角或钝角三角形中的一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某兴趣小组在学习了勾股定理之后提出:“锐(钝)角三角形有没有类似于勾股定理的结论”的问题.首先定义了一个新的概念:如图(1)△ABC中,M是BC的中点,P是射线MA上的点,设数学公式=k,若∠BPC=90°,则称k为勾股比.

(1)如图(1),过B、C分别作中线AM的垂线,垂足为E、D.求证:CD=BE.
(2)①如图(2),当=1,且AB=AC时,AB2+AC2=______BC2(填一个恰当的数).
②如图(1),当k=1,△ABC为锐角三角形,且AB≠AC时,①中的结论还成立吗?若成立,请写出证明过程;若不成立,也请说明理由;
③对任意锐角或钝角三角形,如图(1)、(3),请用含勾股比k的表达式直接表示AB2+AC2与BC2的关系(写出锐角或钝角三角形中的一个即可).

查看答案和解析>>

同步练习册答案