精英家教网 > 初中数学 > 题目详情
2.计算:(5-2$\sqrt{5}$)÷$\sqrt{5}$+($\sqrt{2}$-1)0

分析 先利用二次根式的除法法则和完全平方公式计算,然后合并即可.

解答 解:原式=$\sqrt{5}$-2+1
=$\sqrt{5}$-1.

点评 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.阅读下面的解题过程,并在横线上补全推理过程或依据.
已知:如图,DE∥BC,DF、BE分别平分∠ADE、∠ABC.
试说明∠FDE=∠DEB.
解:∵DE∥BC(已知)
∴∠ADE=∠ABC.(两直线平行,同位角相等)
∵DF、BE分别平分∠ADE、∠ABC (已知)
∴∠ADF=$\frac{1}{2}$∠ADE
∠ABE=$\frac{1}{2}$∠ABC(角平分线定义)
∴∠ADF=∠ABE(等量代换)
∴DF∥BE.(同位角相等,两直线平行)
∴∠FDE=∠DEB.(两直线平行,内错角相等)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.将矩形纸片OABC放在平面直角坐标系中,O为坐标原点,点A在y轴上,点C在x轴上,点B的坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.
(1)如图①.当点Q恰好落在OB上时.求点P的坐标;
(2)如图②,当点P是AB中点时,直线OQ交BC于M点;
(a)求证:MB=MQ;(b)求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程:$\sqrt{x-7}$+$\sqrt{x}$=7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在数轴上表示-1的点与表示$\sqrt{2}$的点的距离$\sqrt{2}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如果实数$\sqrt{3}$+2与$\sqrt{3}$-3在数轴上对应的点分别是点A和点B,那么AB的长度为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知二元一次方程组$\left\{{\begin{array}{l}{2x+3y=5}\\{2x-y=1}\end{array}}\right.$的解也是方程8x-2y=k的解,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)(π-3.14)0+(-3)-2-$\sqrt{4}$+2sin30°
(2)$\frac{2}{x-1}$÷($\frac{2}{{x}^{2}-1}$+$\frac{1}{x+1}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,AB是⊙O的直径,点P是AB下方的半圆上不与点A,B重合的一个动点,点C为AP中点,延长CO交⊙O于点D,连接AD,过点D作⊙O的切线交PB的廷长线于点E,连CE交AB于点F,连接DF.
(1)求证:△DAC≌△ECP;
(2)填空:
①四边形ACED是何种特殊的四边形?
②在点P运动过程中,线段DF、AP的数量关系是DF=$\frac{1}{2}$AP.

查看答案和解析>>

同步练习册答案