5£®Í¬Ñ§ÃÇ£¬ÔÚÊýѧ¿Î±¾µÚ9Õ¡¶Õûʽ³Ë·¨ÓëÒòʽ·Ö½â¡·ÀïѧϰÁËÕûʽ³Ë·¨µÄÍêȫƽ·½¹«Ê½£¬»¹¼ÇµÃËüÊÇÈçºÎ±»·¢ÏÖµÄÂð£¿

¡¾ËÕ¿Æ°æ½Ì²ÄP75Ò³¡¿¼ÆËãÈçͼ1µÄÃæ»ý£¬°Ñͼ1¿´×öÒ»¸ö´óÕý·½ÐΣ¬ËüµÄÃæ»ýÊÇ £¨a+b£©2£¬Èç¹û°Ñͼ1¿´×öÊÇÓÉ2¸ö³¤·½ÐκÍ2¸öСÕý·½ÐÎ×é³ÉµÄ£¬ËüµÄÃæ»ýΪa2+2ab+b2£¬Óɴ˵õ½£º£¨a+b£©2=a2+2ab+b2£®
¡¾Àà±È̽¾¿£¨1£©¡¿£º
Èçͼ2£¬Õý·½ÐÎABCDÊÇÓÉËĸö±ß³¤·Ö±ðÊÇa£¬bµÄ³¤·½ÐκÍÖмäÒ»¸öСÕý·½ÐÎ×é³ÉµÄ£¬¶Ôͼ2µÄÃæ»ý½øÐмÆË㣬
Äã·¢ÏÖµÄʽ×ÓÊÇ£¨a+b£©2=£¨a-b£©2+4ab £¨ÓÃa£¬b±íʾ£©Ó¦ÓÃ̽Ë÷½á¹û½â¾öÎÊÌ⣺
ÒÑÖª£ºÁ½Êýx£¬yÂú×ãx+y=7£¬xy=6£¬Çóx-yµÄÖµ£®
¡¾Àà±È̽¾¿£¨2£©¡¿£º
Èçͼ3£¬Õý·½ÐÎABCDµÄ±ß³¤ÊÇc£¬ËüÓÉËĸöÖ±½Ç±ß³¤·Ö±ðÊÇa£¬bµÄÖ±½ÇÈý½ÇÐκÍÖмäÒ»¸öСÕý·½ÐÎ×é³ÉµÄ£¬
¶Ôͼ3µÄÃæ»ý½øÐмÆË㣬Äã·¢ÏÖµÄʽ×ÓÊÇa2+b2=c2£¨ÓÃa£¬b£¬c±íʾ£¬½á¹û¾¡¿ÉÄÜ»¯¼ò£©
Ó¦ÓÃ̽Ë÷½á¹û½â¾öÎÊÌ⣺Õý·½ÐÎABCDµÄ±ß³¤ÊÇc£¬ËüÓÉËĸöÖ±½Ç±ß³¤·Ö±ðÊÇa£¬bµÄÖ±½ÇÈý½ÇÐκÍÖмäÒ»¸öСÕý·½ÐÎ×é³ÉµÄ£¬µ±a2=3x£¬b2=$\frac{10}{3}$yʱ£¬c=4£»µ±a2=$\frac{3}{2}$x£¬b2=2yʱ£¬c=3£¬Çóx£¬yµÄÖµ£®

·ÖÎö £¨1£©¸ù¾ÝÕý·½ÐÎABCDµÄÃæ»ý=£¨a+b£©2£¬Õý·½ÐÎABCDµÄÃæ»ý£¨a-b£©2+4ab£¬¼´¿ÉµÃ³ö£¨a+b£©2=£¨a-b£©2+4ab£»¾Ý´Ë¿ÉµÃx-yµÄÖµ£®
£¨2£©¸ù¾ÝÕý·½ÐÎABCDµÄÃæ»ý=c2£¬Õý·½ÐÎABCDµÄÃæ»ý£¨a-b£©2+4¡Á$\frac{1}{2}$ab£¬¼´¿ÉµÃ³öa2+b2=c2£¬¾Ý´Ë¿ÉµÃ¹ØÓÚx£¬yµÄ·½³Ì×飬ÇóµÃx£¬yµÄÖµ£®

½â´ð ½â£º£¨1£©Èçͼ2£¬Õý·½ÐÎABCDµÄÃæ»ý=£¨a+b£©2£¬
Õý·½ÐÎABCDµÄÃæ»ý£¨a-b£©2+4ab£¬
¡à£¨a+b£©2=£¨a-b£©2+4ab£»
¡ß£¨x+y£©2=£¨x-y£©2+4xy£¬ÇÒx+y=7£¬xy=6£¬
¡à49=£¨x-y£©2+24£¬
¼´£¨x-y£©2=25£¬
¡àx-yµÄֵΪ¡À5£®
¹Ê´ð°¸Îª£º£¨a+b£©2=£¨a-b£©2+4ab£»

£¨2£©Èçͼ3£¬Õý·½ÐÎABCDµÄÃæ»ý=c2£¬
Õý·½ÐÎABCDµÄÃæ»ý£¨a-b£©2+4¡Á$\frac{1}{2}$ab£¬
¡àc2=£¨a-b£©2+4¡Á$\frac{1}{2}$ab£¬
¼´a2+b2=c2£¬
¡ßµ±a2=3x£¬b2=$\frac{10}{3}$yʱ£¬c=4£»µ±a2=$\frac{3}{2}$x£¬b2=2yʱ£¬c=3£¬
¡à$\left\{\begin{array}{l}{3x+\frac{10}{3}y=16}\\{\frac{3}{2}x+2y=9}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$£®
¹Ê´ð°¸Îª£ºa2+b2=c2£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÍêȫƽ·½¹«Ê½µÄ¼¸ºÎ±³¾°ÒÔ¼°½â¶þÔªÒ»´Î·½³Ì×飬½â¾öÎÊÌâµÄ¹Ø¼üÊÇÔËÓÃÃæ»ý·¨µÃ³öÍêȫƽ·½¹«Ê½£º£¨a+b£©2=a2+2ab+b2£®½âÌâʱעÒâÊýÐνáºÏ˼ÏëµÄÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®µ±x=3ʱ£¬·Öʽ$\frac{x-3}{2x+5}$µÄֵΪ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx-24x+2£¨k-1£©=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£®
£¨1£©ÇókµÄÈ¡Öµ·¶Î§£»
£¨2£©Èç¹û·½³ÌµÄÁ½¸ö¸ù¾ùΪÕûÊý£¬ÇóÕýÕûÊýkµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èô$\frac{1}{a}$+$\frac{1}{b}$=$\frac{4}{a+b}$£¬Çó·Öʽ$\frac{a}{b}$+$\frac{b}{a}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨$\frac{a}{a-2}$-$\frac{4}{{a}^{2}-2a}$£©¡Â$\frac{a+2}{{a}^{2}}$£¬ÆäÖÐa=2017£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®½â²»µÈʽ£¨×飩
£¨1£©$\frac{x+4}{3}-\frac{3x-1}{2}£¾1$£¨ÔÚÊýÖáÉϰѽ⼯±íʾ³öÀ´£©
£¨2£©$\left\{\begin{array}{l}{5x-4£¼3£¨x+2£©}\\{\frac{x-1}{2}¡Ý\frac{2x-1}{5}}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®$\frac{2x}{{x}^{3}+2{x}^{2}+x}$¡Â$\frac{x-1}{{x}^{2}+x}$£¬ÆäÖÐx=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®£¨$\frac{x+9}{x+3}$-$\frac{3-x}{3+x}$£©•$\frac{1}{x+1}$µÄÖµÊǸºÕûÊý£¬ÔòÕûÊýxµÄֵΪ-2»ò-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{{{x^2}-2x+1}}{{{x^2}-1}}$¡Â£¨1-$\frac{3}{x+1}$£©£¬ÆäÖÐx=3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸