精英家教网 > 初中数学 > 题目详情

【题目】小强与小刚都住在安康小区,在同一所学校读书.某天早上,小强从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留分钟,校车行驶途中始终保持匀速.当天早上,小刚从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早分钟到学校站点.他们乘坐的车辆从安康小区站出发所行驶路程(千米)与行驶时间(分钟)之间的函数图象如图所示.

(1)求点的纵坐标的值;

(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.

【答案】(1);(2)当小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校站点的路程千米.

【解析】

试题分析:

试题解析:(1)因为校车的速度为:3÷4=(千米/分钟),

所以m=.

(2)因为 ,所以A(8,),B(10,)

因为 ,所以C(16,9),E(15,9),F(9,0)

设线段BC的解析式为(10x16),

所以 ,解得:,所以(10x16)

设线段EF的解析式为(9x15),

所以 ,解得:,所以9x15

联立得:,解得

因为14-9=5(分钟),(千米)

答:当小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校站点的路程千米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1 , 0),(x2 , 0),且x1<x2 , 图象上有一点M(x0 , y0)在x轴下方,对于以下说法: ①b2﹣4ac>0;
②x=x0是方程ax2+bx+c=y0的解;
③x1<x0<x2
④a(x0﹣x1)(x0﹣x2)<0;
⑤x0<x1或x0>x2
其中正确的有(
A.①②
B.①②④
C.①②⑤
D.①②④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,已知A(22)B(40).若在坐标轴上取点C,使ABC为等腰三角形,则满足条件的点C的个数是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点DEF∥BC,分别交AB、ACE、F两点,则图中共有__________个等腰三角形;EFBE、CF之间的数量关系是__________,△AEF的周长是__________;

(2)如图2,若将(1)中“△ABC中,AB=AC=10”该为△ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有__________个等腰三角形;EFBE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长;

(3)已知:如图3,D△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点DDE∥BC,分别交AB、ACE、F两点,则EFBE、CF之间又有何数量关系呢?直接写出结论不证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】任何一个正整数n都可以写成两个正整数相乘的形式,对于两个因数的差的绝对值最小的一种分解a=m×n(m≤n)可称为正整数a的最佳分解,并记作F(a)= .如:12=1×12=2×6=3×4,则F(12)= .则在以下结论:

①F(5)=5;②F(24)=

③若a是一个完全平方数,则F(a)=1;

④若a是一个完全立方数,即a=x3(x是正整数),

则F(a)=x.则正确的结论有________(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.

求证:(1)BE=DF;(2)AF∥CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简,求值

(1)5x2y+{xy﹣[5x2y﹣(7xy2+xy)]﹣(4x2y+xy)}﹣7xy2,其中x=﹣,y=﹣16.

(2)A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.

(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】认真阅读下面关于三角形内外角平分线的研究片断,完成所提出的问题.

探究1:如图(1)在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:

∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,∠2=∠ACB.

∴∠1+∠2= (∠ABC+∠ACB)= (180°-∠A)=90°-∠A.

∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A

探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=kx+b经过点A(0,6),且平行于直线y=-2x.

1求该函数的解析式,并画出它的图象;

2如果这条直线经过点P(m,2),求m的值;

3若O为坐标原点,求直线OP的解析式;

4求直线y=kx+b和直线OP与坐标轴所围成的图形的面积.

查看答案和解析>>

同步练习册答案