精英家教网 > 初中数学 > 题目详情
1、已知:⊙O1与⊙O2外切于点A,直线l与⊙O1、⊙O2相切于B、C两点,且与O1O2的延长线交于点P(如图).

(1)求∠BAC的度数;当l绕P点逆时针移动(过A点时除外),与⊙O1和⊙O2的交点从左到右依次为B、G、F、C时(如图),∠BAC+∠GAF的度数能定吗?若能确定,请求出.

(2)当直线1绕P点移动到两圆的另一侧且与两圆分别相切于D、E时,在图中各找出两组垂直线段和相似三角形.(不再添加辅助线)
分析:(1)根据如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形.为此,过点A作两圆的内公切线,交BC于点P.根据切线长定理可得PB=PA=PC,得出∠BAC=90°.∠BAC+∠GAF的度数是否能确定,取决于此二角的度数和是否为一个常数,如果过点A作两圆的内公切线,交BC于点Q,所以GAF=∠B+∠P,从而∠BAC+∠GAF=180°.
(2)根据切线的性质容易知道O1D⊥PD,O2E⊥PE.由O1D∥O2E知:△PO1D∽△PO2E.
解答:解:(1)过点A作两圆的内公切线,交BC于点Q,
∵⊙O1与⊙O2外切于点A,直线l与⊙O1、⊙O2相切于B、C两点,
∴QB=QA=QC,
∴∠BAC=90°;
当l绕P点逆时针移动(过A点时除外),与⊙O1和⊙O2的交点从左到右依次为B、G、F、C时,∠BAC+∠GAF的度数能确定.过点A作两圆的内公切线,交BC于点Q;
∵⊙O1与⊙O2外切于点A,
∴∠GAQ=∠B,∠FAQ=∠P,
∴∠GAF=∠GAQ+∠FAQ=∠B+∠P;
∵∠BAC+∠B+∠P=180°,
∴∠BAC+∠GAF=180°;
(2)垂直线段:O1D⊥PD,O2E⊥PE
相似三角形:△PO1D∽△PO2E.
点评:本题综合考查了直线与圆,圆与圆的位置关系,切线的性质,直角三角形,相似三角形的判定等多个知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,已知:⊙O1与⊙O2是等圆,它们相交于A、B两点,O2在⊙O1上,AC是⊙O2的直径,直线CB交⊙O1于D,E为AB延长线上一点,连接DE.
(1)请你连接AD,证明:AD是⊙O1的直径;
(2)若∠E=60°,求证:DE是⊙O1的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:⊙O1与⊙O2相交于A、B两点,⊙O1的切线AC交⊙O2于点C.直线EF过点B交⊙O1于点E,交⊙O2于点F.精英家教网
(1)若直线EF交弦AC于点K时(如图1).求证:AE∥CF;
(2)若直线EF交弦AC的延长线于点时(如图2).求证:DA•DF=DC•DE;
(3)若直线EF交弦AC的反向延长线于点(在图3自作),试判断(1)、(2)中的结论是否成立并证明你的正确判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:⊙O1与⊙O2相交于点A、B,AC切⊙O2于点A,交⊙O1于点C.直线EF过点B,交⊙O1于点E,交⊙O2于点F.
(1)设直线EF交线段AC于点D(如图1).
①若ED=12,DB=25,BF=11,求DA和DC的长;
②求证:AD•DE=CD•DF;
(2)当直线EF绕点B旋转交线段AC的延长线于点D时(如图2),试问AD•DE=CD•DF是否仍然成立?证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知圆O1与⊙O2外切,它们的圆心距为16cm,⊙O1的半径是12cm,则⊙O2的半径是
4
4
cm.

查看答案和解析>>

同步练习册答案