精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.

(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

【答案】
(1)

解:∵MN∥BC,

∴∠AMN=∠B,∠ANM=∠C.

∴△AMN∽△ABC.

,即

∴AN= x;

∴S=SMNP=SAMN= xx= x2.(0<x<4)


(2)

解:如图2,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD= MN.

在Rt△ABC中,BC= =5;

由(1)知△AMN∽△ABC,

,即

∴MN= x

∴OD= x,

过M点作MQ⊥BC于Q,则MQ=OD= x,

在Rt△BMQ与Rt△BCA中,∠B是公共角,

∴△BMQ∽△BCA,

∴BM= x,AB=BM+MA= x+x=4

∴x=

∴当x= 时,⊙O与直线BC相切


(3)

解:随点M的运动,当P点落在直线BC上时,连接AP,则O点为AP的中点.

∵MN∥BC,

∴∠AMN=∠B,∠AOM=∠APB,

∴△AMO∽△ABP,

∵AM=MB=2,

故以下分两种情况讨论:

①当0<x≤2时,y=SPMN= x2

∴当x=2时,y最大= ×4=

②当2<x<4时,设PM,PN分别交BC于E,F,

∵四边形AMPN是矩形,

∴PN∥AM,PN=M=x,

又∵MN∥BC,

∴四边形MBFN是平行四边形;

∴FN=BM=4﹣x,

∴PF=x﹣(4﹣x)=2x﹣4,

又∵△PEF∽△ACB,

∴SPEF= (x﹣2)2

y=SMNP﹣SPEF= x2 (x﹣2)2=﹣ x2+6x﹣6,

当2<x<4时,y=﹣ x2+6x﹣6=﹣ (x﹣ 2+2,

∴当x= 时,满足2<x<4,y最大=2.

综上所述,当x= 时,y值最大,最大值是2


【解析】(1)由于三角形PMN和AMN的面积相当,那么可通过求三角形AMN的面积来得出三角形PMN的面积,求三角形AMN的面积可根据三角形AMN和ABC相似,根据相似比的平方等于面积比来得出三角形AMN的面积;(2)当圆O与BC相切时,O到BC的距离就是MN的一半,那么关键是求出MN的表达式,可根据三角形AMN和三角形ABC相似,得出MN的表达式,也就求出了O到BC的距离的表达式,如果过M作MQ⊥BC于Q,那么MQ就是O到BC的距离,然后在直角三角形BMQ中,用∠B的正弦函数以及BM的表达式表示出MQ,然后让这两表示MQ的含x的表达式相等,即可求出x的值;(3)要求重合部分的面积首先看P点在三角形ABC内部还是外面,因此可先得出这两种情况的分界线即当P落到BC上时,x的取值,那么P落点BC上时,MN就是三角形ABC的中位线,此时AM=2,因此可分两种情况进行讨论:
①当0<x≤2时,此时重合部分的面积就是三角形PMN的面积,三角形PMN的面积(1)中已经求出,即可的x,y的函数关系式.②当2<x<4时,如果设PM,PN交BC于E,F,那么重合部分就是四边形MEFN,可通过三角形PMN的面积﹣三角形PEF的面积来求重合部分的面积.不难得出PN=AM=x,而四边形BMNF又是个平行四边形,可得出FN=BM,也就有了FN的表达式,就可以求出PF的表达式,然后参照(1)的方法可求出三角形PEF的面积,即可求出四边形MEFN的面积,也就得出了y,x的函数关系式.然后根据两种情况得出的函数的性质,以及对应的自变量的取值范围求出y的最大值即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,M△ABC的边BC的中点,AN平分∠BACBN⊥AN于点N,延长BNAC于点D,已知AB=10BC=15MN=3

1)求证:BN=DN

2)求△ABC的周长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O直径,BC为⊙O切线,连接A、C两点,交⊙O于点D,BE=CE,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=CD2OE;
(3)若cos∠BAD= ,BE=6,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,已知AD=10,CD=4,B′D=2.

(1)求证:B′E=BF;

(2)求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E. F. GH分别是边ABBCCDDA的中点.

(1)判断四边形EFGH的形状,并说明你的理由;

(2)连接BDAC,BDAC满足何条件时,四边形EFGH是正方形?证明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解决问题:

一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.

(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.

(2)小明家距小彬家多远?

(3)货车一共行驶了多少千米?

(4)货车每千米耗油0.2升,这次共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小米是一个爱动脑筋的孩子,他用如下方法作∠AOB的角平分线: 作法:如图,

⑴在射线OA上任取一点C,过点C作CD∥OB;
⑵以点C为圆心,CO的长为半径作弧,交CD于点E;
⑶作射线OE.
所以射线OE就是∠AOB的角平分线.请回答:小米的作图依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了响应市委和市政府绿色环保,节能减排的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:

进价(元/只)

售价(元/只)

甲种节能灯

30

40

甲种节能灯

35

50

(1)求幸福商场甲、乙两种节能灯各购进了多少只?

(2)全部售完100只节能灯后,商场共计获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c的顶点为D(﹣1,2),其部分图象如图所示,给出下列四个结论: ①a<0; ②b2﹣4ac>0;③2a﹣b=0;④若点P(x0 , y0)在抛物线上,则ax02+bx0+c≤a﹣b+c.其中结论正确的是(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案