精英家教网 > 初中数学 > 题目详情
20.如图是一顶圆锥形烟囱小纸帽,它的母线长l是13cm,高h为12cm,则制作这顶纸帽所需纸张的面积是(接缝忽略不计)(  )
A.60πB.65πC.78πD.156π

分析 根据勾股定理求得圆锥的底面半径,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算即可.

解答 解:∵圆锥的母线长l是13cm,高h为12cm,
∴圆锥的底面半径为r=$\sqrt{1{3}^{2}-1{2}^{2}}$=5cm,
∴这张扇形纸板的面积=$\frac{1}{2}$×2π×5×13=65π(cm2).
故选B.

点评 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,抛物线y=ax2-5ax-6a交x轴于A、B两点(A左B右),交y轴于点C,直线y=-x+b交抛物线于D,交x轴于E,且△ACE的面积为6.
(1)求抛物线的解析式;
(2)点P为CD上方抛物线上一点,过点P作x轴的平行线,交直线CD于F,设P点的横坐标为m,线段PF的长为d,求d与m的函数关系式;
(3)在(2)的条件下,过点P作PG⊥CD,垂足为G,若∠APG=∠ACO,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,△ABC中,AC=BC=a,AB=b,以BC为直径作⊙O交AB于点D,交AC于点E,过点D作⊙O的切线MN,交CB的延长线于点M,交AC于点N.
(1)求证:MN⊥AC;
(2)连接BE,写出求BE长的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,某校教学楼AB的后面有一办公楼CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高3米的影子CE;而当光线与地面的夹角是45°时,教学楼顶A在地面上的影子F与墙角C有30米的距离(B、F、C在一条直线上).现要在A、E之间挂一些彩旗,求A、E之间的距离.(参考数据:sin22°≈$\frac{3}{8}$,cos22°≈$\frac{15}{16}$,tan22°≈$\frac{2}{5}$,精确到0.1m)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,数轴上有A、B、C、D四个点,其中所对应的数的绝对值最大的点是(  )
A.点AB.点BC.点CD.点D

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.定义:在平行四边形中,若有一条对角线是一边得两倍,则称这个平行四边形为两倍四边形,其中这条对角线叫做两倍对角线,这条边叫做两倍边.
如图1,四边形ABCD是平行四边形,BE∥AC,延长DC交BE于点E,连结AE交BC于点F,AB=1,AD=m.
(1)若∠ABC=90°,如图2.
①当m=2时,试说明四边形ABEC是两倍四边形;
②是否存在值m,使得四边形ABCD是两倍四边形,若存在,求出m的值,若不存在,请说明理由;
(2)如图1,四边形ABCD与四边形ABEC都是两倍四边形,其中BD与AE为两倍对角线,AD与AC为两倍边,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:
①如图1,在等边三角形ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN.
②如图2,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
任务要求:
(1)请你从①、②两个命题中选择一个进行证明.
(2)请你继续完成下面的探索:
①如图3,在正n(n≥3)边形ABCDEF…中,M,N分别是CD,DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立;(不要求证明)
②如图4,在正五边形ABCDE中,M,N分别是DE,AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立.若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.关于x的一元二次方程ax2+2x+c=0(a≠0)有两个相等的实数根,写出一组满足条件的实数a,c的值:a=1,c=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DE⊥BD交BC的延长线于点E.
(1)求证:四边形ACED是平行四边形;
(2)若BD=4,AC=3,求cos∠CDE的值.

查看答案和解析>>

同步练习册答案