分析 连接DP,作PM⊥CD,PN⊥BC,求出S△BDP,再根据F为BP的中点,可得S△BDP=2S△BDF,问题可解.
解答 解:连接DP,作PM⊥CD,PN⊥BC,
设的正方形ABCD的边长为a,
∵E为AD的中点,G为CE中点,
∴BC=CD=a,GM=$\frac{1}{2}$ED=$\frac{1}{4}$a,GN=$\frac{1}{2}$a,
∵S△BGC=2,
∴$\frac{1}{2}$a•$\frac{1}{2}$a=2,
∴BC=a=2$\sqrt{2}$,
∴S△BDG=S△BDC-S△BGC-S△DGC=$\frac{1}{2}$a2-$\frac{1}{2}$×a×$\frac{1}{2}$a-$\frac{1}{2}$×a×$\frac{1}{4}$a=$\frac{1}{8}$a2,
∵F为BG的中点,
∴S△BFD=$\frac{1}{2}$S△BDG=$\frac{1}{16}$a2=$\frac{1}{16}$×8=$\frac{1}{2}$,
故答案为:2$\sqrt{2}$,$\frac{1}{2}$.
点评 题主要考查正方形的性质和三角形面积的计算,解答此题的关键是作好辅助线,连接DP,根据F为BP的中点,可得S△BDP=2S△BDF.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | BG=CE | B. | BG⊥CE | ||
C. | S正方形ABDE>S四边形ANMG | D. | BC2=CF•FM |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3 | B. | 4 | C. | 2$\sqrt{3}$ | D. | $\sqrt{3}$+1 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com