精英家教网 > 初中数学 > 题目详情

如图所示,面积为8的矩形ABOC的边OB,OC分别在x轴、y轴的正半轴上,点A在双曲线数学公式的图象上,且AC=2.
(1)求反比例函数数学公式的解析式.
(2)与矩形ABOC全等的矩形FBDE,边BF在x轴的正半轴上,BD在边BA上,双曲线交DE于M点,交EF于N点,求△MEN的面积.

解:(1)∵矩形ABOC的面积为8,AC=2,所以AB=4.
∴点A的坐标为(2,4).
∵点A在双曲线的图象上,所以4=
∴所求的双曲线的解析式为

(2)由题意可知点M的纵坐标为2,点N的横坐标为6,
∴M点的横坐标为4,N点的纵坐标为
∴EM=2,EN=,S△MEN==
分析:(1)根据矩形的面积,可得出矩形的长和宽,从而得出A点的坐标,代入曲线方程中即可得出k的值,便可得出反比例函数的解析式;
(2)结合题意,可得出点M的横坐标和点N的横坐标,由于点M和N均在曲线上,故可得出M和N的坐标,便可得出EM的长和EN的长,在Rt△NME中,利用面积公式即可得出MEN的面积.
点评:本题主要考查了反比例函数解析式的求法和矩形的性质以及三角形面积公式的应用,知识点较多,但不是太难,属于基础性题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,面积为8的矩形ABOC的边OB,OC分别在x轴、y轴的正半轴上,点A在双曲精英家教网线y=
k
x
的图象上,且AC=2.
(1)求反比例函数y=
k
x
的解析式.
(2)与矩形ABOC全等的矩形FBDE,边BF在x轴的正半轴上,BD在边BA上,双曲线交DE于M点,交EF于N点,求△MEN的面积.

查看答案和解析>>

科目:初中数学 来源:河北省模拟题 题型:解答题

如图所示,面积为8 的矩形ABOC 的边OB、OC分别在x轴、y轴的正半轴上,点A在反比例函数y=的图象上,且AC =2。
(1)求反比例函数y=的解析式;
(2)已知矩形FBDE与矩形ABOC全等,边BF在x 轴的正半轴上,BD在线段BA 上,反比例函数的图象交DE于M点,交EF于N点,连接MN,求△MEN的面积。

查看答案和解析>>

科目:初中数学 来源:河北省模拟题 题型:解答题

如图所示,面积为8的矩形ABOC的边OB,OC分别在x轴、y轴的正半轴上,点A在双曲线的图象上,且AC=2。
(1)求反比例函数的解析式;
(2)与矩形ABOC全等的矩形FBDE,边BF在x轴的正半轴上,BD在边BA上,双曲线交DE于M点,交EF于N点,求△MEN的面积。

查看答案和解析>>

科目:初中数学 来源:2011年河北省唐山市丰南区中考数学一模试卷(解析版) 题型:解答题

如图所示,面积为8的矩形ABOC的边OB,OC分别在x轴、y轴的正半轴上,点A在双曲线的图象上,且AC=2.
(1)求反比例函数的解析式.
(2)与矩形ABOC全等的矩形FBDE,边BF在x轴的正半轴上,BD在边BA上,双曲线交DE于M点,交EF于N点,求△MEN的面积.

查看答案和解析>>

同步练习册答案