分析 (1)利用待定系数法求得y与x之间的一次函数关系式;
(2)根据“利润=(售价-成本)×售出件数”,可得利润W与销售价格x之间的二次函数关系式,然后求出其最大值.
解答 解:(1)由题意,可设y=kx+b(k≠0),
把(5,30000),(6,20000)代入得:$\left\{\begin{array}{l}{30000=5k+b}\\{20000=6k+b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-10000}\\{b=80000}\end{array}\right.$,
所以y与x之间的关系式为:y=-10000x+80000;
(2)设利润为W元,则W=(x-4)(-10000x+80000)
=-10000(x-4)(x-8)
=-10000(x2-12x+32)
=-10000[(x-6)2-4]
=-10000(x-6)2+40000
所以当x=6时,W取得最大值,最大值为40000元.
答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元.
点评 本题主要考查利用函数模型(二次函数与一次函数)解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com