精英家教网 > 初中数学 > 题目详情

【题目】观察猜想:(1)如图①,在RtABC中,∠BAC90°,ABAC3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BFBEBF的位置关系是   BE+BF   

探究证明:(2)在(1)中,如果将点D沿AB方向移动,使AD1,其余条件不变,如图②,判断BEBF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;

拓展延伸:(3)如图③,在△ABC中,ABAC,∠BACa,点D在边BA的延长线上,BDn,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDFa,连接BF,则BE+BF的值是多少?请用含有na的式子直接写出结论.

【答案】观察猜想:(1BFBEBC;探究证明:(2BFBEBF+BE,见解析;拓展延伸:(3BF+BE.

【解析】

1)只要证明△BAF≌△CAE,即可解决问题;

2)如图②中,作DHACBCH.利用(1)中结论即可解决问题;

3)如图③中,作DHACBC的延长线于H,作DMBCM.只要证明△BDF≌△HDE,可证BF+BEBH,即可解决问题.

1)如图①中,

∵∠EAF=∠BAC90°,

∴∠BAF=∠CAE

AFAEABAC

∴△BAF≌△CAE

∴∠ABF=∠CBFCE

ABAC,∠BAC90°,

∴∠ABC=∠C45°,

∴∠FBE=∠ABF+∠ABC90°,BCBE+ECBE+BF

故答案为BFBEBC

2)如图②中,作DHACBCH

DHAC

∴∠BDH=∠A90°,△DBH是等腰直角三角形,

由(1)可知,BFBEBF+BEBH

ABAC3AD1

BDDH2

BH2

BF+BEBH2

3)如图③中,作DHACBC的延长线于H,作DMBCM

ACDH

∴∠ACH=∠H,∠BDH=∠BACα

ABAC

∴∠ABC=∠ACB

∴∠DBH=∠H

DBDH

∵∠EDF=∠BDHα

∴∠BDF=∠HDE

DFDEDBDH

∴△BDF≌△HDE

BFEH

BF+BEEH+BEBH

DBDHDMBH

BMMH,∠BDM=∠HDM

BMMHBDsin

BF+BEBH2nsin

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有四张仅一面分别标有1234的不透明纸片,除所标数字不同外,其余都完全相同.

1)将四张纸片分成两组,标有13的为第一组,标有24的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;

2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)阅读理解

利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA1PBPC2.求∠BPC的度数.

为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为_____;在△PAP′中,易证∠PAP′90°,且∠PP′A的度数为_____,综上可得∠BPC的度数为_____

(2)类比迁移

如图2,点P是等腰RtABC内的一点,∠ACB90°PA2PBPC1,求∠APC的度数;

(3)拓展应用

如图3,在四边形ABCD中,BC3CD5ABACAD.∠BAC2ADC,请直接写出BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)尝试探究

如图1,等腰RtABC的两个顶点BC在直线MN上,点D是直线MN上一个动点(点D在点C的右边),BC=3BD=m,在ABC同侧作等腰RtADE,∠ABC=ADE=90°,EF MN于点F,连结CE.

①求DF的长;

②在判断ACCE是否成立时,小明同学发现可以由以下两种思路解决此问题:

思路一:先证CF=EF,求出∠ECF=45°,从而证得结论成立.

思路二:先求DFEF的长,再求CF的长,然后证AC2+CE2=AE2,从而证得结论成立.

请你任选一种思路,完整地书写本小题的证明过程.(如用两种方法作答,则以第一种方法评分)

2)拓展探究

(1)中的两个等腰直角三角形都改为有一个角为的直角三角形,如图2 ABC=ADE=90°,∠BAC=DAE=30°,BC=3BD=m,当4≤m≤6时,求CE长的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.

(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;

(2)在(1)的条件下,若DE:AE:CE= 1: :3,求∠AED的度数;

(3)若BC= 4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的一边DF与边DM重合时(如图2),若OF=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC中,∠A30°,点P从点A出发以2cm/s的速度沿折线ACB运动,点Q从点A出发以vcm/s的速度沿AB运动,PQ两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为xs),△APQ的面积为ycm2),y关于x的函数图象由C1C2两段组成,如图2所示,有下列结论:v1sinB图象C2段的函数表达式为y=﹣x2+xAPQ面积的最大值为8,其中正确有(  )

A.①②B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知函数yx+2的图象与函数yk≠0)的图象交于AB两点,连接BO并延长交函数yk≠0)的图象于点C,连接AC,若ABC的面积为8.则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.

(1)试判断直线BC与⊙O的位置关系,并说明理由;

(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).

查看答案和解析>>

同步练习册答案