【题目】解下列方程或方程组
(1)2x﹣1=x+9
(2)x+5=2(x﹣1)
(3)
(4)
【答案】(1) (2) (3) (4)
【解析】
解:(1)对移项合并2x﹣1=x+9即可得到答案;
(2)先去括号得x+5=2x﹣2,移项合并,再系数化为1即可得到答案;
(3)去分母得20﹣5x=3x﹣9﹣15,移项合并,再系数化为1即可得到答案;
(4)去分母得40﹣15x+35=﹣4x﹣68,移项合并,再系数化为1即可得到答案.
解:(1)对2x﹣1=x+9移项合并得:x=10;
(2)去括号得:x+5=2x﹣2,
移项合并得:﹣x=﹣7,
系数化为1得:x=7;
(3)去分母得:20﹣5x=3x﹣9﹣15,
移项合并得:﹣8x=﹣44,
系数化为1得:x=5.5;
(4)去分母得:40﹣15x+35=﹣4x﹣68,
移项合并得:﹣11x=﹣143,
系数化为1得:x=13.
科目:初中数学 来源: 题型:
【题目】如图A在数轴上对应的数为-2.
(1)点B在点A右边距离A点4个单位长度,则点B所对应的数是_____.
(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒3个单位长度沿数轴向右运动.现两点同时运动,当点A运动到-6的点处时,求A、B两点间的距离.
(3)在(2)的条件下,现A点静止不动,B点以原速沿数轴向左运动,经过多长时间A、B两点相距4个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某餐厅中,一张桌子可坐6人,有以下两种摆放方式:
(1)有4张桌子,用第一种摆设方式,可以坐 人;用第二种摆设方式,可以坐 人;
(2)有n张桌子,用第一种摆设方式可以坐 人;用第二种摆设方式,可以坐 人(用含有n的代数式表示);
(3)一天中午,餐厅要接待120位顾客共同就餐,但餐厅中只有30张这样的长方形桌子可用,且每6张拼成一张大桌子,若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的材料:
符号、p分别表示一种运算,它对一些数的运算结果如下:
(0)=-1, (1)=0 , (2)=1 , (-3)=-4, (-4)=-5,……
p(-1)=-2,p()=1,p()=, p(2)=4, p(-3)=-6,……
根据以上运算规律,完成下列问题:
(1)计算:(-5)×p()+2
(2)已知x为有理数,且(x)+ p()=2×(-4),求x的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F=180°.
请你认真完成下面的填空.
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∴AB∥EF ( )
∴∠B+∠F=180°( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,经过原点O的抛物线(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).
(1)求这条抛物线的表达式;
(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列两个等式:,,给出定义如下:我们称使等式成立的一对有理数“,”为“共生有理数对”,记为(,).
(1)通过计算判断数对“2,1,“4,”是不是“共生有理数对”;
(2)若(6,a)是“共生有理数对”,求a的值;
(3)若(m,n)是“共生有理数对”,则“n,m”___“共生有理数对”(填“是”或“不是”),并说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点坐标为A(1,-4),B(5,-4),C(4,-1).
(1)在方格纸中画出△ABC;
(2)求出△ABC的面积;
(3)若把△ABC向上平移6个单位长度,再向左平移7个单位长度得到△A′B′C′,在图中画出△A′B′C′,并写出B′的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com