精英家教网 > 初中数学 > 题目详情
如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E,F在边AB上,点G在边BC上.

⑴求证:△ADE≌△BGF;
⑵若正方形DEFG的面积为16,求AC的长.
(1)证明见解析;(2)cm.

试题分析:(1)先根据等腰直角三角形的性质得出∠B=∠A=45°,再根据四边形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出结论;
(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.
试题解析:(1)证明:∵△ABC是等腰直角三角形,∠C=90°,
∴∠B=∠A=45°,
∵四边形DEFG是正方形,
∴∠BFG=∠AED=90°,
故可得出∠BGF=∠ADE=45°,GF=ED,
∵在△ADE与△BGF中,

∴△ADE≌△BGF(ASA);
(2)解:过点C作CG⊥AB于点H,

∵正方形DEFG的面积为16cm2,
∴DE=AE=4cm,
∴AB=3DE=12cm,
∵△ABC是等腰直角三角形,CH⊥AB,
∴AH=AB=×12=6cm,
在Rt△ADE中,
∵DE=AE=4cm,
∴AD=cm,
∵CH⊥AB,DE⊥AB,
∴CH∥DE,
∴△ADE∽△ACH,
,即
解得:AC=cm.
考点: 1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.等腰直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,连接OD,过点D作⊙O的切线,交AB延长线于点E,交AC于点F.
(1)求证:OD∥AC;
(2)当AB=10,时,求AF及BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知E、F是平行四边形ABCD对角线BD的三等分点,且CG=3,则AD等于     

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=__________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,AB=10,AD=4,点P是边AB上一点,若△APD与△BPC相似,则满足条件的点P有   个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AD为等边△ABC边BC上的高,AB=4,AE=1,P为高AD上任意一点,则EP+BP的最小值为(  )。
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为 (  )

A.   B.   C.   D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在比例尺是1∶8 000的南京市城区地图上,太平南路的长度约为25 cm,它的实际长度约为(  )
A.320 cmB.320 m
C.2 000 cmD.2 000 m

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果将一个三角形绕着它一个角的顶点旋转后使这个角的一边与另一边重叠,再将旋转后的三角形进行相似缩放,使重叠的两条边互相重合,我们称这样的图形变换为三角形转似,这个角的顶点称为转似中心,所得的三角形称为原三角形的转似三角形。如图,在△ABC中,AB=6,BC=7,AC=5,△是△ABC以点C为转似中心的其中一个转似三角形,那么以点C为转似中心的另一个转似三角形△(点分别与A、B对应)的边的长为_____。

查看答案和解析>>

同步练习册答案