精英家教网 > 初中数学 > 题目详情
小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当月内销售单价不变,则月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:
(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.
(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?
(1)当销售单价定为35元时,每月获得的利润最大,最大利润为2250元;
(2)如果小赵想要每月获得的利润不低于2000元,那么他的销售单价应不低于30元而不高于40元.

试题分析:(1)根据每月利润=单件利润×每月销量,从而得出w与x的关系式,利用配方法求最值即可;
(2)由题意得,w≥2000,解不等式即可得出答案.
试题解析:(1)由题意,得:w=(x﹣20)•y=(x﹣20)•(﹣10x+500)
=﹣10x2+700x﹣10000
=﹣10(x﹣35)2+2250,
当x=35时,w取得最大,最大利润为2250元.
答:当销售单价定为35元时,每月获得的利润最大,最大利润为2250元.
(2)由题意得:﹣10x2+700x﹣10000≥2000,
解得:30≤x≤40.
答:如果小赵想要每月获得的利润不低于2000元,那么他的销售单价应不低于30元而不高于40元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求此抛物线的解析式;
(2)抛物线上是否存在点P,使,若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数,下列说法:①当时,的增大而减小;②若图象与轴有交点,则;③当时,不等式的解集是;④若将图象向上平移1个单位,再向左平移3个单位后过点,则.其中正确的有    (填正确答案的序号).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐上,且点A(0,2),点C(,0),如图所示:抛物线经过点B。

(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交于点C.

(1)分别求出点A、B、C的坐标;
(2)设抛物线的顶点为M,求四边形ABMC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-x+150,成本为20元/件,月利润为W(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润为W(元).
(1)若只在国内销售,当x=1000(件)时,y=         (元/件);
(2)分别求出W、W与x间的函数关系式(不必写x的取值范围);
(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是二次函数图象的一部分,图象过点(3,0),且对称轴为,给出下列四个结论:①;②;③;④,其中正确结论的序号是___________.(把你认为正确的序号都写上)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图①,在Rt△ACB中,∠C=90º,AC=6cm,BC=8cm,点P由B出发沿BC方向向点C匀速运动,速度为2cm/s;点Q由A出发沿AB方向向点B匀速运动,速度为1cm/s;连接PQ.若设运动的时间为t(s)(0<t<4),解答下列问题:

(1)当t为何值时,PQ的垂直平分线经过点B?
(2)如图②,连接CQ.设△PQC的面积为y(cm2),求y与t之间的函数关系式;

(3)如图②,是否存在某一时刻t,使线段C Q恰好把四边形ACPQ的面积分成1:2的两部分?若存在,求出此时t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线y=(x+2)2-3的图像向上平移5个单位,得到函数解析式为            

查看答案和解析>>

同步练习册答案