精英家教网 > 初中数学 > 题目详情

如图,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点.
(1)求出正比例函数和反比例函数的关系式;
(2)观察图象,写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若点Q在第一象限中的双曲线上运动,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.

解:(1)设正比例函数解析式为y=kx(k≠0),
将点M(-2,-1)坐标代入得k=,所以正比例函数解析式为y=x,
设反比例函数解析式为y=(k1≠0),
将点M(-2,-1)坐标代入得k1=2
所以反比例函数解析式为

(2)根据正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,结合图象得出:
当-2<x<0或x>2时,正比例函数值大于反比例函数值.

(3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC,
而点P(-1,-2)是定点,所以OP的长也是定长,
所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值,
因为点Q在第一象限中双曲线上,所以可设点Q的坐标为Q(n,),
由勾股定理可得OQ2=n2+=n2+-4+4=(n-2+4,
所以当(n-2=0即n-=0时,OQ2有最小值4,
又因为OQ为正值,所以OQ与OQ2同时取得最小值,
所以OQ有最小值2,由勾股定理得OP=
所以平行四边形OPCQ周长的最小值是2(OP+OQ)=2(+2)=2+4.
分析:(1)正比例函数和反比例函数的图象都经过点M(-2,-1),设出正比例函数和反比例函数的解析式,运用待定系数法可求它们解析式;
(2)根据正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,得出交点两侧两函数大小正好不同,结合图象得出即可.
(3)因为四边形OPCQ是平行四边形,所以OP=CQOQ=PC,而点P(-1,-2)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值.
点评:此题考查了一次函数和反比例函数二次函数的图形和性质,综合性比较强.要注意对各个知识点的灵活应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;
(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四精英家教网边形OABD的面积S满足:S1=
23
S?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数y=ax与反比例函数y=
kx
的图象交于点A(3,2)
(1)求上述两函数的表达式;
(2)M(m,n)是反比例函数图象上的一个动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A点作直线AC∥y轴交x轴于点C,交直线MB于点D.若s四边形OADM=6,求点M的坐标,并判断线段BM与DM的大小关系,说明理由;
(3)探索:x轴上是否存在点P.使△OAP是等腰三角形?若存在,求出点P的坐标; 若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正比例函数y=3x与反比例函数y=
kx
(k≠0)
的图象都经过点A和点B,点A的横坐精英家教网标为1,过点A作x轴的垂线,垂足为M,连接BM.
求:(1)这个反比例函数的解析式;
(2)△ABM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数y=kx的图象经过点A(-2
3
,a),过点A作AB⊥x轴于点B,△A0B的面积为4
3

(1)求k和a的值;
(2)若一次函数y=nx+2的图象经过点A,并且与X轴相交于点M,问:在x轴上是否存在点P,使得以三点P、A、M组成的三角形AMP为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的三角形的面积.

查看答案和解析>>

同步练习册答案