精英家教网 > 初中数学 > 题目详情
(2012•乐山)如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距20
3
千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.
(1)求该轮船航行的速度;
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:
2
≈1.414
3
≈1.732
分析:(1))过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.
(2)延长AB交l于D,比较OD与AM、AN的大小即可得出结论.
解答:解(1)过点A作AC⊥OB于点C.由题意,得
OA=20
3
千米,OB=20千米,∠AOC=30°.
AC=
1
2
OA=
1
2
×20
3
=10
3
(千米).(1分)
∵在Rt△AOC中,OC=OA•cos∠AOC=20
3
×
3
2
=30(千米).
∴BC=OC-OB=30-20=10(千米).…(3分)
∴在Rt△ABC中,AB=
AC2+BC2
=
(10
3
)
2
+102
=20(千米).(5分)
∴轮船航行的速度为:20÷
40
60
=30
(千米/时).…(6分)
(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.    …(7分)
理由:延长AB交l于点D.
∵AB=OB=20(千米),∠AOC=30°.
∴∠OAB=∠AOC=30°,∴∠OBD=∠OAB+∠AOC=60°.
∴在Rt△BOD中,OD=OB•tan∠OBD=20×tan60°=20
3
(千米).…(9分)
20
3
>30+1,
∴该轮船不改变航向继续航行,不能行至码头MN靠岸.     …(10分)
点评:本题考查了解直角三角形的应用,此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•乐山)如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐山)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFE是等腰直角三角形;
②四边形CEDF不可能为正方形;
③四边形CEDF的面积随点E位置的改变而发生变化;
④点C到线段EF的最大距离为
2

其中正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐山)如图,⊙O是四边形ABCD的内切圆,E、F、G、H是切点,点P是优弧
EFH
上异于E、H的点.若∠A=50°,则∠EPH=
65°
65°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乐山)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)
(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.

查看答案和解析>>

同步练习册答案