【题目】如图,平面直角坐标系中,,.
(1)作出关于直线对称的图形△并写出△各顶点的坐标;
(2)将△向左平移2个单位,作出平移后的△,并写出△各顶点的坐标;
(3)观察和△,它们是否关于某直线对称?若是,请指出对称轴,并求的面积.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线的图像与x轴交于B,C两点(B在C的左侧),与y轴交于点A。
(1)求出点A,B,C的坐标。
(2)向右平移抛物线,使平移后的抛物线恰好经过△ABC的外心,求出平移后的抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,BC是的直径,点A在上,点D在CA的延长线上,,垂足为点E,DE与相交于点H,与AB相交于点过点A作,与DE相交于点F.
求证:AF为的切线;
当,且时,求:的值;
如图2,在的条件下,延长FA,BC相交于点G,若,求线段EH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,O是AD的中点,动点E在线段AB上,连接EO并延长交射线CD于点F,过O作EF的垂线交射线BC于点G,连接EG、FG.
如图1,判断的形状,并说明理由;
如图1,设,的面积为y,求y关于x的函数关系式;
将点A沿直线EO翻折,得到点如图2,请计算在点E运动的过程中,点G运动路径的长度并分别求出当点G位于路径的起点和终点时,的值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,抛物线与x轴交于,两点,与y轴交于点C,点D为顶点.
求抛物线解析式及点D的坐标;
若直线l过点D,P为直线l上的动点,当以A、B、P为顶点所作的直角三角形有且只有三个时,求直线l的解析式;
如图2,E为OB的中点,将线段OE绕点O顺时针旋转得到,旋转角为,连接、,当取得最小值时,求直线与抛物线的交点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查随机调查了某班所有同学最喜欢的节目每名学生必选且只能选择四类节目中的一类并将调查结果绘成如下不完整的统计图根据两图提供的信息,回答下列问题:
最喜欢娱乐类节目的有______人,图中______;
请补全条形统计图;
根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;
在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,
(1)当t=2时,求△PBQ的面积;
(2)当t=时,试说明△DPQ是直角三角形;
(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com