精英家教网 > 初中数学 > 题目详情
7.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.
(1)若∠ABC=75°,∠ACB=45°,求∠D的度数;
(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.

分析 (1)根据三角形内角和定理以及角平分线性质,先求出∠D、∠A的等式,推出∠A=2∠D,最后代入求出即可;
(2)根据(1)中的结论即可得到结论.

解答 解:∵∠ACE=∠A+∠ABC,
∴∠ACD+∠ECD=∠A+∠ABD+∠DBE,∠DCE=∠D+∠DBC,
又BD平分∠ABC,CD平分∠ACE,
∴∠ABD=∠DBE,∠ACD=∠ECD,
∴∠A=2(∠DCE-∠DBC),∠D=∠DCE-∠DBC,
∴∠A=2∠D,
∵∠ABC=75°,∠ACB=45°,
∴∠A=60°,
∴∠D=30°;

(2)∠D=$\frac{1}{2}$(∠M+∠N-180°);
理由:延长BM、CN交于点A,
则∠A=∠BMN+∠CNM-180°,
由(1)知,∠D=$\frac{1}{2}∠$A,
∴∠D=$\frac{1}{2}$(∠M+∠N-180°).

点评 此题考查三角形内角和定理以及角平分线性质的综合运用,解此题的关键是求出∠A=2∠D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.不等式组$\left\{\begin{array}{l}{-2x≥0}\\{3x-2<-x}\end{array}\right.$的解集是x≤0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列计算正确的是(  )
A.x2+3x2=4x4B.x2y•2x3=2x6yC.(6x3y2)÷(3x)=2x2D.(-3x)2=9x2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,菱形ABCD的对角线相交于O,若AB=5,OA=4,则BD=6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示,在平面直角坐标系xOy中,B,C两点的坐标分别为B(4,0),C(4,4),CD⊥y轴于点D,直线l经过点D.
(1)直接写出点D的坐标;
(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.
①依题意补全图形;
②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;
③通过思考、讨论,同学们形成了证明该猜想的几种思路:
思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出∠CFB=45°,从而证明结论.
思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN为矩形,从而证明结论.

请你参考上面的思路完成证明过程.(一种方法即可)
解:(1)点D的坐标为(0,4),
(2)①补全图形,
②直线BF与直线l的位置关系是BF⊥直线l,
③证明:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)计算:-($\frac{1}{4}$)-1+(-2)2×(-2017)0
(2)解不等式组:$\left\{\begin{array}{l}{x-6>-2x}\\{\frac{1}{2}x<3}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.分式方程$\frac{2}{x-1}$=$\frac{3}{x}$的解为x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.有5张纸签,分别标有数字-1,0,-0.5,1,2,从中随机的抽取一张,则抽到标有的数字为正数的纸签的概率是0.4.

查看答案和解析>>

同步练习册答案