精英家教网 > 初中数学 > 题目详情

如图所示,PC、DA为⊙O的切线,AB为⊙O的直径,已知DA=2,CD∶DP=1∶2,则AB的长为

[  ]

A.
B.
C.2
D.4
答案:A
解析:

根据切线长定理,CD=AD=2,则DP=2×2=4,CP=6;

在直角△PAD中, AD是DP的一半,则∠P=30°,

则在直角△POC中,OP=2OC,且,∴OC=2,∴直径AB=4.选A.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(-1,0),B(-l,2),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线y=ax2+bx+c经过点D、M、N.
(1)求抛物线的解析式.
(2)抛物线上是否存在点P,使得PA=PC?若存在,求出点P的坐标;若不存在,请说明理由.
(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(),B(),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线经过点D、M、N.
(1)求抛物线的解析式.
(2)抛物线上是否存在点P,使得PA=PC,若存在,求出点P的坐标;若不存在,请说明理由.
(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值.

查看答案和解析>>

科目:初中数学 来源:2012年广东省深圳市中考数学信息卷(三)(解析版) 题型:解答题

如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(-1,0),B(-l,2),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线y=ax2+bx+c经过点D、M、N.
(1)求抛物线的解析式.
(2)抛物线上是否存在点P,使得PA=PC?若存在,求出点P的坐标;若不存在,请说明理由.
(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值.

查看答案和解析>>

科目:初中数学 来源:2012年福建省泉州市德化县中考数学模拟试卷(四)(解析版) 题型:解答题

如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(-1,0),B(-l,2),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线y=ax2+bx+c经过点D、M、N.
(1)求抛物线的解析式.
(2)抛物线上是否存在点P,使得PA=PC?若存在,求出点P的坐标;若不存在,请说明理由.
(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值.

查看答案和解析>>

同步练习册答案