【题目】如图,点是等边内一点,且,点是边的中点,连接,.
(1)如图1,若点,,三点共线,则与的数量关系是______;
(2)如图2,若点,,三点不共线,问(1)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由;
(3)如图3,若,,直接写出的长是______.
【答案】(1);(2)上述结论仍然成立,证明见解析;(3)
【解析】
(1)由等边三角形的性质和已知条件得出∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠BAP=∠CAP=∠BAC=30°,得出PB=PC,由等腰三角形的性质得出∠PBC=∠PCB=30°,得出PC=2PM,证出∠ACP=60°-30°=30°=∠CAP,得出AP=PC,即可得出AP=2PM;(2)延长BP至D,使PD=PC,连接AD、CD,证明△ACD≌△BCP(SAS),得出AD=BP,∠ADC=∠BPC=120°,证明△CMN≌△BMP(SAS),得出CN=BP=AD,∠NCM=∠PBM,证明△ADP≌△NCP(SAS),即可得出AP=PN=2CM;(3)作CE⊥BD于E,设BP=4x,则PD=PC=3x,由等边三角形的性质得出PE=PD=x,CE=PE=x,得出BE=BP+PE=x,在Rt△BCE中,由勾股定理得出方程,求出x=2,得出AD=BP=8,PD=PC=6,作PF⊥AD于F,则∠DPF=30°,由直角三角形的性质得出DF=PD=3,PF=DF=3,得出AF=AD-DF=8-3=5,由勾股定理即可得出答案.
(1)AP=2PM,理由如下:
∵△ABC是等边三角形,点M是边BC的中点,
∴∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠BAP=∠CAP=∠BAC=30°,
∴PB=PC,
∵∠BPC=120°,
∴∠PBC=∠PCB=30°,
∴PC=2PM,∠ACP=60°-30°=30°=∠CAP,
∴AP=PC,
∴AP=2PM;
故答案为:AP=2PM;
(2)AP=2PM成立,理由如下:
如图,延长BP至D,使PD=PC,连接AD、CD,
则∠CPD=180°-∠BPC=60°,
∴△PCD是等边三角形,
∴CD=PD=PC,∠PDC=∠PCD=60°,
∵△ABC是等边三角形,
∴BC=AC,∠ACB=60°=∠PCD,
∴∠BCP=∠ACD,
又∵AC=CB,
∴△ACD≌△BCP(SAS),
∴AD=BP,∠ADC=∠BPC=120°,
∴∠ADP=120°-60°=60°,
延长PM至N,使MN=MP,连接CN,
∵点M是边BC的中点,
∴CM=BM,
又∵∠CMN=∠PMB,
∴△CMN≌△BMP(SAS),
∴CN=BP=AD,∠NCM=∠PBM,
∴CN∥BP,
∴∠NCP+∠BPC=180°,
∴∠NCP=60°=∠ADP,
在△ADP和△NCP中,
,
∴△ADP≌△NCP(SAS),
∴AP=PN=2CM;
(3)如图,延长BP至D,使PD=PC,连接AD、CD,延长PM至N,使MN=MP,连接CN,作CE⊥BD于E,
同(2)得:AD=BP,AP=2CM;
设BP=4x,则PD=PC=3x,
∵CE⊥BD,△CPD是等边三角形,
∴PE=PD=x,CE=PE=x,
∴BE=BP+PE=x,
∵△ABC是等边三角形,
∴BC=AB= ,
在Rt△BCE中,由勾股定理得:
解得:x=2,
∴AD=BP=8,PD=PC=6,
作PF⊥AD于F,则∠DPF=90°-60°=30°,
∴DF= PD=3,PF= DF=3 ,
∴AF=AD-DF=8-3=5,
∴;
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,E是AC上一点,且AE=AB,∠BAC=2∠EBC ,以AB为直径的⊙O交AC于点D,交EB于点F.
(1)求证:BC与⊙O相切;
(2)若AB=8,BE=4,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线与y轴交于C点,与x轴交于A,B两点(点A在点B左侧),且点A的横坐标为-1.
(1)求a的值;
(2)设抛物线的顶点P关于原点的对称点为,求点的坐标;
(3)将抛物线在A,B两点之间的部分(包括A, B两点),先向下平移3个单位,再向左平移m()个单位,平移后的图象记为图象G,若图象G与直线无交点,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次篮球比赛中,如图队员甲正在投篮.已知球出手时离地面m,与篮圈中心的水平距离为7 m,球出手后水平距离为4 m时达到最大高度4 m,设篮球运行轨迹为抛物线,篮圈距地面3 m.
(1)建立如图所示的平面直角坐标系,问此球能否准确投中?
(2)此时,对方队员乙在甲面前1 m处跳起盖帽拦截,已知乙的最大摸高为3.1 m,那么他能否获得成功?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点,点在直线上运动,把点绕点逆时针旋转,点的对应点为点,我们发现点随点变化而变化.若点在运动变化过程中始终在抛物线的上方,设点的横坐标为,则的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为( )
A.6B.8C.10D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环境意识,节约用水,某校数学教师编制了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:
月用水量(吨) | 单价(元/吨) |
不大于10吨部分 | 1.5 |
大于10吨不大于m吨部分(20≤m≤50) | 2 |
大于m吨部分 | 3 |
(1)若某用户六月份用水量为18吨,求其应缴纳的水费;
(2)记该用户六月份用水量为吨,缴纳水费为元,试列出与的函数式;
(3)若该用户六月份用水量为40吨,缴纳水费元的取值范围为,试求的取值范围.
各位同学,请你也认真做一做,相信聪明的你一定会顺利完成.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:各类方程的解法
求解一元一次方程, 根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为二元一次方程组来解.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生不适合原方程的根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想-转化,即:把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程可以通过因式分解把它转化为,解方程和,可得方程的解
问题:方程的解是 , ,
拓展:用“转化”思想求方程的解;
变式:用“转化”思想解方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com