【题目】在平面直角坐标系xOy中,反比例函数y=(x>0)的图象G与直线l:y=2x﹣4交于点A(3,a).
(1)求k的值;
(2)已知点P(0,n)(n>0),过点P作平行于x轴的直线,与图象G交于点B,与直线l交于点C.横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段AC,BC围成的区域(不含边界)为W.
①当n=5时,直接写出区域W内的整点个数;
②若区域W内的整点恰好为3个,结合函数图象,直接写出n的取值范围.
【答案】(1)k=6;(2)①有3个整数点:(2,4),(3,3),(3,4);②4<n≤5或0<n<1
【解析】
(1)把A(3,a)代入y=2x﹣4求得a=2,然后根据待定系数法即可求得k的值;
(2)①当n=5时,得到B为(,5),C(,5),结合图象于是得到结论;
②分两种情况,根据图象即可得到结论.
解:(1)反比例函数y=(x>0)的图象G与直线l:y=2x﹣4交于点A(3,a).
∴a=2×3﹣4=2,
∴A(3,2),
∵反比例函数y=(x>0)的图象G经过A(3,2),
∴k=3×2=6;
(2)①当n=5时,则B为(,5),C(,5),
∴在W区域内有3个整数点:(2,4),(3,3),(3,4);
②由图1可知,若区域W内的整点恰好为3个,当P点在A点的上方时,则4<n≤5;
当P点在A点的下方时,则0<n<1,
综上所述,若区域W内恰有3个整点,n的取值范围为:4<n≤5或0<n<1;
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线x=5与直线y=3,x轴分别交于点A,B,直线y=kx+b(k≠0)经过点A且与x轴交于点C(9,0).
(1)求直线y=kx+b的表达式;
(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.
①结合函数图象,直接写出区域W内的整点个数;
②将直线y=kx+b向下平移n个单位,当平移后的直线与区域W没有公共点时,请结合图象直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF.
(1)求证:四边形EBFD是菱形;
(2)若BK=3EK,AE=4,求四边形EBFD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.
(1)求证:四边形AEBD是矩形;
(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角∠AOB如图,
(1)在射线OA上取一点C,以点O为圆心,OC长为半径作弧DE,交射线OB于点F,连接CF;
(2)以点F为圆心,CF长为半径作弧,交弧DE于点G;
(3)连接FG,CG.作射线OG.
根据以上作图过程及所作图形,下列结论中错误的是( )
A.∠BOG=∠AOBB.若CG=OC,则∠AOB=30°
C.OF垂直平分CGD.CG=2FG
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABM中,∠ABM=90°,以AB为一边向△ABM的异侧作正方形ABCD,以A为圆心,AM为半径作⊙A,我们称正方形ABCD为⊙A的“关于△ABM的友好正方形”,如果正方形ABCD恰好落在⊙A的内部(或圆上),我们称正方形ABCD为⊙A的“关于△ABM的绝对友好正方形”,例如,图1中正方形ABCD是⊙A的“关于△ABM的友好正方形”.
(1)图2中,△ABM中,BA=BM,∠ABM=90°,在图中画出⊙A的“关于△ABM的友好正方形ABCD”.
(2)若点A在反比例函数y=(k>0,x>0)上,它的横坐标是2,过点A作AB⊥y轴于B,若正方形ABCD为⊙A的“关于△ABO的绝对友好正方形”,求k的取值范围.
(3)若点A是直线y=﹣x+2上的一个动点,过点A作AB⊥y轴于B,若正方形ABCD为⊙A的“关于△ABO的绝对友好正方形”,求出点A的横坐标m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过举国上下抗击新型冠状病毒的斗争,疫情得到了有效控制,国内各大企业在2月9日后纷纷进入复工状态.为了了解全国企业整体的复工情况,我们查找了截止到2020年3月1日全国部分省份的复工率,并对数据进行整理、描述和分析.下面给出了一些信息:
a.截止3月1日20时,全国已有11个省份工业企业复工率在90%以上,主要位于东南沿海地区,位居前三的分别是贵州(100%)、浙江(99.8%)、江苏(99%).
b.各省份复工率数据的频数分布直方图如图1(数据分成6组,分别是40<x≤50;
50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100):
c.如图2,在b的基础上,画出扇形统计图:
d.截止到2020年3月1日各省份的复工率在80<x≤90这一组的数据是:
81.3 | 83.9 | 84 | 87.6 | 89.4 | 90 | 90 |
e.截止到2020年3月1日各省份的复工率的平均数、中位数、众数如下:
日期 | 平均数 | 中位数 | 众数 |
截止到2020年3月1日 | 80.79 | m | 50,90 |
请解答以下问题:
(1)依据题意,补全频数分布直方图;
(2)扇形统计图中50<x≤60这组的圆心角度数是 度(精确到0.1).
(3)中位数m的值是 .
(4)根据以上统计图表简述国内企业截止3月1日的复工率分布特征.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=kx2+(2k+1)x+1(k为实数).
(1)对于任意实数k,函数图象一定经过点(﹣2,﹣1)和点_____;
(2)对于任意正实数k,当x>m时,y随着x的增大而增大,写出一个满足题意的m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com