精英家教网 > 初中数学 > 题目详情

如图1,操作:把正方形CGEF的对角线CE放在正方形ABCD的边BC的延长线上(CGBC),取线段AE的中点M

探究:线段MDMF的关系,并加以证明。

说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明。

注意:选取①完成证明得10分;选取②完成证明得7分;选取③完成证明得5分。

① DM的延长线交CE于点N,且AD=NE;

② 将正方形CGEF绕点C逆时针旋转45°(如图2),

其他条件不变;③在②的条件下且CF=2AD。

附加题:将正方形CGEF绕点C旋转任意角度后(如图3),其他条件不变。探究:线段MDMF的关系,并加以证明。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图甲,操作:把正方形CGEF的对角线,CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.
(1)探究线段MD、MF的位置及数量关系,直接写出答案即可;
(2)将正方形CGEF绕点C逆时针旋转45°(如图乙),令CG=2BC其他条件不变,结论是否发生变化,并加以证明;
(2)将正方形CGEF绕点C旋转任意角度后(如图丙),其他条件不变.探究:线段MD,MF的位置及数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图甲,操作:把正方形CGEF的对角线,CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.
(1)探究线段MD、MF的位置及数量关系,直接写出答案即可;
(2)将正方形CGEF绕点C逆时针旋转45°(如图乙),令CG=2BC其他条件不变,结论是否发生变化,并加以证明;
(2)将正方形CGEF绕点C旋转任意角度后(如图丙),其他条件不变.探究:线段MD,MF的位置及数量关系,并加以证明.
作业宝

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,操作:把正方形CGEF的对角线

CE放在正方形ABCD的边BC的延长线上(CG>BC),

取线段AE的中点M。

探究:线段MD、MF的关系,并加以证明。

说明:(1)如果你经历反复探索,没有找到解决问题

的方法,请你把探索过程中的某种思路写出来(要求

至少写3步);(2)在你经历说明(1)的过程之后,

可以从下列①、②、③中选取一个补充或更换已知条件,

完成你的证明。

注意:选取①完成证明得10分;选取②完成证明得

7分;选取③完成证明得5分。

①     DM的延长线交CE于点N,且AD=NE;

②     将正方形CGEF绕点C逆时针旋转45°(如图2),

其他条件不变;③在②的条件下且CF=2AD。

查看答案和解析>>

科目:初中数学 来源:2010年学大教育中考数学模拟试卷(解析版) 题型:解答题

(2010•博野县三模)如图甲,操作:把正方形CGEF的对角线,CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.
(1)探究线段MD、MF的位置及数量关系,直接写出答案即可;
(2)将正方形CGEF绕点C逆时针旋转45°(如图乙),令CG=2BC其他条件不变,结论是否发生变化,并加以证明;
(2)将正方形CGEF绕点C旋转任意角度后(如图丙),其他条件不变.探究:线段MD,MF的位置及数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源:2010年河北省保定市博野县中考数学三模试卷(解析版) 题型:解答题

(2010•博野县三模)如图甲,操作:把正方形CGEF的对角线,CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M.
(1)探究线段MD、MF的位置及数量关系,直接写出答案即可;
(2)将正方形CGEF绕点C逆时针旋转45°(如图乙),令CG=2BC其他条件不变,结论是否发生变化,并加以证明;
(2)将正方形CGEF绕点C旋转任意角度后(如图丙),其他条件不变.探究:线段MD,MF的位置及数量关系,并加以证明.

查看答案和解析>>

同步练习册答案