精英家教网 > 初中数学 > 题目详情
已知反比例函数的图象与一次函数的图象交于点A(1,4)和点B
).

(1)求这两个函数的表达式;
(2)观察图象,当>0时,直接写出>时自变量的取值范围;
(3)如果点C与点A关于轴对称,求△ABC的面积.
解:(1)∵点A(1,4)在的图象上,∴=1×4=4。
∴反比例函数的表达式为 
∵点B在的图象上,∴ 。∴点B(-2,-2)。
又∵点A、B在一次函数的图象上,
,解得 。
∴一次函数的表达式为。 
(2)由图象可知,当 0<<1时,成立
(3)∵点C与点A关于轴对称,∴C(1,-4)。
过点B作BD⊥AC,垂足为D,则D(1,-5)。   

∴△ABC的高BD=1=3,底为AC=4=8。
∴SABC=AC·BD=×8×3=12。 
(1)根据点A的坐标求出反比例函数的解析式为,再求出B的坐标是(-2,-2),利用待定系数法求一次函数的解析式。
(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出当>0时,一次函数的值小于反比例函数的值x的取值范围或0<x<1。
(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A,B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获毛利润分别为30元和40元,乙店铺获毛利润分别为27元和36元。某日王老板进货A款式服装35件,B款式服装25件。怎样分配给每个店铺各30件服装,使得在保证乙店铺毛利润不小于950元的前提下,王老板获取的总毛利润最大?最大的总毛利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).

(1)求该反比例函数的解析式;
(2)求直线BC的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把直线向上平移m个单位后,与直线的交点在第一象限,则m的取值范围是
A.1<m<7B.3<m<4 C.m>1D.m<4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数的图象与x轴、y轴分别相交于点A、B.P是射线BO上的一个动点(点P不与点B重合),过点P作PC⊥AB,垂足为C,在射线CA上截取CD=CP,连接PD.设BP=t.

(1)t为何值时,点D恰好与点A重合?
(2)设△PCD与△AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则k的取值范围是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某校家长委员会计划在九年级毕业生中实施“读万卷书,行万里路,了解赤峰,热爱家乡”主题活动,决定组织部分毕业生代表走遍赤峰全市12个旗、县、区考察我市创建文明城市成果,远航旅行社对学生实行九折优惠,吉祥旅行社对20人以内(含20人)学生旅行团不优惠,超过20人超出的部分每人按八折优惠.两家旅行社报价都是2000元/人.服务项目、旅行路线相同.请你帮助家长委员会策划一下怎样选择旅行社更省钱.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.
(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.
(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?
(3)“五•一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?
打折前一次性购物总金额
优惠措施
不超过400元
售价打九折
超过400元
售价打八折

查看答案和解析>>

同步练习册答案