精英家教网 > 初中数学 > 题目详情
已知有一长方形的周长为12,其中一边长为x,另一边长为y.
(1)求y与x的关系式,并求出x的范围;
(2)画出它的图象.
(1)根据题意知,y=
12-2x
2
=-x+6,
∵x>0,-x+6>0,
∴0<x<6;

(2)列表:
x06
y60
描点连线,其函数图象如图所示(端点空心).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线MN:y=-x+b与x轴交于点M(4,0),与y轴交于点N,长方形ABCD的边AB在x轴上,AB=2,AD=1.长方形ABCD由点A与点O重合的位置开始,以每秒1个单位长度的速度沿x轴正方向作匀速直线运动,当点A与点M重合时停止运动.设长方形运动的时间为t秒,长方形ABCD与△OMN重合部分的面积为S.
(1)求直线MN的解析式;
(2)当t=1时,请判断点C是否在直线MN上,并说明理由;
(3)请求出当t为何值时,点D在直线MN上;
(4)直接写出在整个运动过程中S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一次函数y=kx+b与y轴交于点(0,2),且过点(3,5).
求:①一次函数的表达式;②直线与两坐标轴围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,且线段OA、OC(OA>OC)是方程x2-18x+80=0的两根,将边BC折叠,使点B落在边OA上的点D处.
(1)求线段OA、OC的长;
(2)求直线CE与x轴交点P的坐标及折痕CE的长;
(3)是否存在过点D的直线l,使直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(北师大版)如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为
2
-1,直线a:y=-x-
2
与坐标轴分别交于A,C两点,点B的坐标为(4,1),⊙B与X轴相切于点M.
(1)求点A的坐标及∠CAO的度数;
(2)⊙B以每秒1个单位长度的速度沿x轴负方向平移,同时,直线a绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线a也恰好与⊙B第一次相切.问:直线AC绕点A每秒旋转多少度;
(3)如图2,过A,O,C三点作⊙O1,点E是劣弧
AO
上一点,连接EC,EA.EO,当点E在劣弧
AO
上运动时(不与A,O两点重合),
EC-EA
EO
的值是否发生变化?如果不变,求其值;如果变化,说明理由

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线l的解析式为y=-x+4,它与x轴、y轴分别相交于A、B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,设运动时间为t秒(0<t≤4).
(1)求A、B两点的坐标;
(2)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S1,在直线m的运动过程中,当t为何值时,S1为△OAB面积的
5
16

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=-
1
2
x+4分别与x轴,y轴交于点C、D,以OD为直径作⊙A交CD于F,FA的延长线交⊙A于E,交x轴于B.
(1)求点A的坐标;
(2)求△ADF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,
3
),点D是线段BC上的动点(与B、C不重合),过点D作直线l:y=-
3
x+b
交线段OA于点E.
(1)直接写出矩形OABC的面积(用含a的代数式表示);
(2)已知a=3,当直线l将矩形OABC分成周长相等的两部分时
①求b的值;
②梯形ABDE的内部有一点P,当⊙P与AB、AE、ED都相切时,求⊙P的半径.
(3)已知a=5,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,设CD=k,当k满足什么条件时,使矩形OABC和四边形O1A1B1C1的重叠部分的面积为定值,并求出该定值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为(  )
A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0

查看答案和解析>>

同步练习册答案