精英家教网 > 初中数学 > 题目详情
7.如图,点B在反比例函数y=$\frac{4}{x}$(x>0)的图象上,点A,C分别在x轴、y轴正半轴上,且四边形OABC为正方形.
(1)求点B的坐标;
(2)点P是y=$\frac{4}{x}$在第一象限的图象上点B右侧一动点,且S△POB=S△AOB,求点P的坐标.

分析 (1)设B(t,$\frac{4}{t}$),利用正方形的边长相等得到t=$\frac{4}{t}$,解得t=2,于是得到B(2,2);
(2)直线OB的解析式为y=x,过点A作OB的平行线l交反比例函数在第一象限的图象于P点,如图,利用待定系数法求出直线l的解析式为y=x-2,然后解方程组$\left\{\begin{array}{l}{y=\frac{4}{x}}\\{y=x-2}\end{array}\right.$得P点坐标.

解答 解:(1)设B(t,$\frac{4}{t}$),
∵四边形OABC为正方形,
∴AB=CB,即t=$\frac{4}{t}$,
∴t=2,
∴B(2,2);
(2)直线OB的解析式为y=x,
过点A作OB的平行线l交反比例函数在第一象限的图象于P点,如图,
设直线l的解析式为y=x+m,
把A(2,0)代入得2+m=0,解得m=-2,
所以直线l的解析式为y=x-2,
解方程组$\left\{\begin{array}{l}{y=\frac{4}{x}}\\{y=x-2}\end{array}\right.$得$\left\{\begin{array}{l}{x=1-\sqrt{5}}\\{y=-1-\sqrt{5}}\end{array}\right.$(舍去)或$\left\{\begin{array}{l}{x=1+\sqrt{5}}\\{y=-1+\sqrt{5}}\end{array}\right.$,
∴P(1+$\sqrt{5}$,-1+$\sqrt{5}$).

点评 本题考查了反比例函数比例系数k的几何意义:在反比例函数y=$\frac{k}{x}$图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是$\frac{1}{2}$|k|,且保持不变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,求证:△BDE≌△CDF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,折叠一张长方形纸片,已知∠1=66°,则∠2的度数是57°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:直线l过点(0,2),且与x轴平行;直线y=$\frac{1}{4}$x+1与y轴交于A点,与直线l交于B点;抛物线y=-x2+2mx-m2+2的顶点为C.
(1)求A,B两点的坐标;
(2)求点C的坐标(用m表示);
(3)若抛物线y=-x2+2mx-m2+2与线段AB有公共点,求m的取值范围.?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1,BC1,若∠ACB=30°,AB=1,CC1=x(0<x<2),△ACD与△A1C1D1重叠部分的面积为S,则下列结论:
①△A1AD1≌△CC1B;
②当x=1时,△BDD1为直角三角形;
③在平移过程中,四边形ABC1D1始终是平行四边形;
④S=$\frac{\sqrt{3}}{4}$(x-2)2(0<x<2);
其中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在矩形ABCD中,AB=6,BC=8,点E为AB的中点,点F为BC边上任意一点,将△BEF沿EF翻折,点B的对应点为B′,则当△B′CD面积最小时折痕EF的长为3$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:
(1)△ABC的顶点都在方格纸的格点上,先将△ABC向右平移2个单位,再向上平移3个单位,得到△A1B1C1,其中点A1、B1、C1分别是A、B、C的对应点,试画出
△A1B1C1
(2)连接AA1、BB1,则线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为相等;
(3)△A1B1C1的面积为3(平方单位)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:
①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC
其中正确的是(  )
A.①②③④B.②③C.①②④D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,一次函数y=-$\frac{{\sqrt{3}}}{3}$x+1的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限作等边△ABC.
(1)若点C在反比例函数y=$\frac{k}{x}$的图象上,求该反比例函数的解析式;
(2)点P(2$\sqrt{3}$,m)在第一象限,过点P作x轴的垂线,垂足为D,当△PAD与△OAB相似时,P点是否在(1)中反比例函数图象上?如果在,求出P点坐标;如果不在,请加以说明.

查看答案和解析>>

同步练习册答案