精英家教网 > 初中数学 > 题目详情
如图①,直线AM⊥AN,⊙O分别与AM、AN相切于B、C两点,连接OC、BC,则有∠ACB=∠OCB;(请思考:为什么?)如果测得AB=a,则可知⊙O的半径r=a.(请思考:为什么?)
(1)将图①中直线AN向右平移,与⊙O相交于C1、C2两点,⊙O与AM的切点仍记为B,如图②.请你写出与平移前相应的结论,并将图②补充完整;判断此结论是否成立,且说明理由.
(2)在图②中,若只测得AB=a,能否求出⊙O的半径r?若能求出,请你用a表示r;若不能求出,请补充一个条件(补充条件时不能添加辅助线,若补充线段请用b表示,若补充角请用α表示),并用a和补充的条件表示r.
(1)图②中相应结论为∠AC1B=∠OC1B和∠AC2B=∠OC2B.(2分)
先证∠AC1B=∠OC1B.
连接OB、OC1
∵AM与⊙O相切于B,
∴OB⊥AM;
∵AN⊥AM,
∴OBAN,
∴∠AC1B=∠OBC1
∵OB=OC1
∴∠OBC1=∠OC1B,
∴∠AC1B=∠OC1B.
同理可证∠AC2B=∠OC2B.(4分)

(2)若只测得AB=a,不能求出⊙O的半径r.(5分)
补充条件:另测得AC1=b.(6分)
作OD⊥C1C2,则C1D=C2D.
∵AB2=AC1•AC2,∴AC2=
a2
b

∴C1C2=AC2-AC1=
a2
b
-b=
a2-b2
b

∴C1D=
1
2
C1C2=
a2-b2
2b

故r=OB=AD=AC1+C1D=b+
a2-b2
2b
=
a2+b2
2b
.(10分)
说明:1.①若补充条件:另测得AC1=b,则r=
a2+b2
2b

②若补充条件:另测得C1C2=b,则r=
4a2+b2
2

③若补充条件:另测得BC1=b,则r=
b2
b2-a2
2(b2-a2)

④若补充条件:另测得∠ABC1=α,则r=
a
2sinαcosα

2.以上答案供参考,若有其他答案,只要正确,都应给分.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.
(1)若∠C=30°,求证:BE是△DEC外接圆的切线;
(2)若BE=
3
,BD=1,求△DEC外接圆的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.
(1)试判断BF与⊙O的位置关系,并说明理由;
(2)若BF=5,cos∠C=
4
5
,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等边△ABC的面积为S,⊙O是它的外接圆,点P是
BC
的中点.
(1)试判断过点C所作⊙O的切线与直线AB是否相交,并证明你的结论;
(2)设直线CP与AB相交于点D,过点B作BE⊥CD,垂足为E,证明BE是⊙O的切线,并求△BDE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:PA是⊙O的切线,A为切点,PBC是过圆心的割线,PA=10,PB=5,则tan∠PAB的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AC是⊙O的直径,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切线,E是切点,
求证:(1)ODAB;
(2)2DE2=BE•OD;
(3)设BE=2,∠ODE=a,则cos2a=
1
OD

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
求证:(1)BC平分∠PBD;
(2)BC2=AB•BD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD,垂足为C,若AB=2cm,半圆O的半径为2cm,则BC的长为______cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,PA切⊙O于点A,PBC是经过O点的割线,若∠P=30°,则弧AB的度数是(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

同步练习册答案