精英家教网 > 初中数学 > 题目详情
20.如图,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC与外角∠DCE的平分线所在直线相交而形成的锐角.

①如图1,若α+β>180°,求∠P的度数.(用α、β的代数式表示)
②如图2,若α+β<180°,请在图③中画出∠P,并求得∠P=90°-$\frac{1}{2}$(α+β).(用α、β的代数式表示)

分析 (1)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠PBC+(180°-2∠DCP)=180°-2(∠DCF-∠FBC)=180°-2∠P,从而得出结论;
(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠GBC+(180°-2∠HCE)=180°+2(∠GBC-∠HCE)=180°+2∠P,从而得出结论;

解答 解:(1)∵∠ABC+∠DCB=360°-(α+β),
∴∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-2∠DCP)=180°-2(∠DCP-∠FBC)=180°-2∠P,
∴360°-(α+β)=180°-2∠P,
2∠P=α+β-180°,
∴∠P=$\frac{1}{2}$(α+β)-90°;

(2)∵∠ABC+∠DCB=360°-(α+β),
∴∠ABC+(180°-∠DCE)=360°-(α+β)=2∠GBC+(180°-2∠HCE)=180°+2(∠GBC-∠HCE)=180°+2∠P,
∴360°-(α+β)=180°+2∠P,
∴∠P=90°-$\frac{1}{2}$(α+β);
故答案为:90°-$\frac{1}{2}$(α+β).

点评 本题考查了多边形内角与外角和角平分线的定义,(1)中得出360°-(α+β)=180°-2∠P,(2)中得出360°-(α+β)=180°+2∠P是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.三角形两边长分别是2,4,第三边长为偶数,第三边长为4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.$\sqrt{36}$的平方根是±$\sqrt{6}$,81的算术平方根是9,$\root{3}{-64}$=-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,点A、B、C、D在坐标轴上,直线AB与直线CD:y=2x+2相交于点E(a,-3),连接BC,其中B(0,-5).
(1)求直线AB的解析式;
(2)求△BCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知直线AB,CD相交于点O,EO⊥CD,垂足为O,OA平分∠EOD,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,正方形ABCD中,P,Q是BC边上的三等分点,连接AQ、DP交于点R.若正方形ABCD的面积为144cm2,则△PQR的面积为6cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:(2$\sqrt{3}$+$\sqrt{6}$)(2$\sqrt{3}$-$\sqrt{6}$)-${(2\sqrt{3}-\sqrt{6})}^{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在长方形ABCD中,AB=6,AD=4,点P是CD上的动点,且不与点C,D重合,设DP=x,梯形ABCP的面积为y,则下面表述正确的是(  )
A.y=24-2x,0<x<6B.y=24-2x,0<x<4C.y=24-3x,0<x<6D.y=24-3x,0<x<4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,对“隔离直线”给出如下定义:
点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.
如图1,直线l:y=-x-4是函数y=$\frac{6}{x}$(x<0)的图象与正方形OABC的一条“隔离直线”.
(1)在直线y1=-2x,y2=3x+1,y3=-x+3中,是图1函数y=$\frac{6}{x}$(x<0)的图象与正方形OABC的“隔离直线”的为y1=-2x;
请你再写出一条符合题意的不同的“隔离直线”的表达式:y=-3x;
(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是($\sqrt{3}$,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;
(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2-2x-3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.

查看答案和解析>>

同步练习册答案