【题目】如图,A是反比例函数y=(x>0)图象上一点,以OA为斜边作等腰直角△ABO,将△ABO绕点O以逆时针旋转135°,得到△A1B1O,若反比例函数y=的图象经过点B1,则k的值是_____.
【答案】-2
【解析】
过点A作AE⊥y轴于点E,过点B1作BF⊥y轴于点F,则可证明△OB1F∽△OAE,设A(m,n),B1(a,b),根据三角形相似和等腰三角形的性质求得m=.n=-a,再由反比例函数k的几何意义,可得出k的值.
过点A作AE⊥y轴于点E,过点B1作BF⊥y轴于点F,
∵等腰直角△ABO绕点O以逆时针旋转135°,
∴∠AOB1=90°,
∴∠OB1F=∠AOE,
∵∠OFB1=∠AEF=90°,
∴△OB1F∽△OAE,
∴==,
设A(m,n),B1(a,b),
∵在等腰直角三角形OAB中,=,OB=OB1,
∴==,
∴m=b.n=﹣a,
∵A是反比例函数y=(x>0)图象上一点,
∴mn=4,
∴﹣ab=4,解得ab=﹣2.
∵反比例函数y=的图象经过点B1,
∴k=﹣2.
故答案为:﹣2.
科目:初中数学 来源: 题型:
【题目】定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
理解:
(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点 D,使四边形ABCD是以AC为“相似对角线”的四边形(画出1个即可);
(2)如图2,在四边形ABCD中,,对角线BD平分∠ABC.
求证: BD是四边形ABCD的“相似对角线”;
运用:
(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=.连接EG,若△EFG的面积为,求FH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设 AE=m.
(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)
(2)写出矩形EFGH的个数及对应的m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为5,点E、F分别在BC和CD边上,分别连接AE、AF、EF,若∠EAF=45°,则△CEF的周长是( )
A.6+2B.8.5C.10D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“五一”小长假期间,某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性购物满500元以上均可获得两次摸球的机会(摸出小球后放回).超市根据两小球所标金额的和返还相应的代金券.
(1)顾客甲购物1000元,则他最少可获 元代金券,最多可获 元代金券.
(2)请用树形图或列表方法,求出顾客甲获得不低于30元(含30元)代金券的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.
(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:
租出的车辆数 | 未租出的车辆数 | ||
租出每辆车的月收益 | 所有未租出的车辆每月的维护费 |
(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠BAC=90°,AB=AC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角△AEF,使∠EAF=90°,连接BF交CD的延长线于点P.
(1)探索:CE与BF有何数量关系和位置关系?并说明理由;
(2)如图2,若AB=2,AE=1,把△AEF绕点A顺时针旋转至△AE'F′,当∠E′AC=60°时,求BF′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ.
(1)求∠PCQ的度数;
(2)当AB=4,AP=时,求PQ的大小;
(3)当点P在线段AC上运动时(P不与A,C重合),求证:2PB2=PA2+PC2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com