精英家教网 > 初中数学 > 题目详情
5.平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD,AB的中点.下列结论:①EG=EF; ②△EFG≌△GBE; ③FB平分∠EFG;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是①②④.

分析 由中点的性质可得出EF∥CD,且EF=$\frac{1}{2}$CD=BG,结合平行即可证得②结论成立,由BD=2BC得出BO=BC,即而得出BE⊥AC,由中线的性质可知GP∥BE,且GP=$\frac{1}{2}$BE,AO=EO,通过证△APG≌△EPG得出AG=EG=EF得出①成立,再证△GPE≌△FPE得出④成立,此题得解.

解答 解:令GF和AC的交点为点P,如图所示:
∵E、F分别是OC、OD的中点,
∴EF∥CD,且EF=$\frac{1}{2}$CD,
∵四边形ABCD为平行四边形,
∴AB∥CD,且AB=CD,
∴∠FEG=∠BGE(两直线平行,内错角相等),
∵点G为AB的中点,
∴BG=$\frac{1}{2}$AB=$\frac{1}{2}$CD=FE,
在△EFG和△GBE中,$\left\{\begin{array}{l}{BG=FE}&{\;}\\{∠FEG=∠BGE}&{\;}\\{GE=EG}&{\;}\end{array}\right.$,
∴△EFG≌△GBE(SAS),即②成立,
∴∠EGF=∠GEB,
∴GF∥BE(内错角相等,两直线平行),
∵BD=2BC,点O为平行四边形对角线交点,
∴BO=$\frac{1}{2}$BD=BC,
∵E为OC中点,
∴BE⊥OC,
∴GP⊥AC,
∴∠APG=∠EPG=90°
∵GP∥BE,G为AB中点,
∴P为AE中点,即AP=PE,且GP=$\frac{1}{2}$BE,
在△APG和△EGP中,$\left\{\begin{array}{l}{AP=EP}&{\;}\\{∠APG=∠EPG}&{\;}\\{GP=GP}&{\;}\end{array}\right.$,
∴△APG≌△EPG(SAS),
∴AG=EG=$\frac{1}{2}$AB,
∴EG=EF,即①成立,
∵EF∥BG,GF∥BE,
∴四边形BGFE为平行四边形,
∴GF=BE,
∵GP=$\frac{1}{2}$BE=$\frac{1}{2}$GF,
∴GP=FP,
∵GF⊥AC,
∴∠GPE=∠FPE=90°
在△GPE和△FPE中,$\left\{\begin{array}{l}{GP=FP}&{\;}\\{∠GPE=∠FPE}&{\;}\\{EP=EP}&{\;}\end{array}\right.$,
∴△GPE≌△FPE(SAS),
∴∠GEP=∠FEP,
∴EA平分∠GEF,即④成立.
故答案为:①②④.

点评 本题考查了全等三角形的判定与性质、中位线定理以及平行线的性质定理,解题的关键是利用中位线,寻找等量关系,借助于证明全等三角形找到边角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.剪纸,又叫刻纸,是一种镂空艺术,是中国汉族最古老的民间艺术之一,它在视觉上给人以透空的感觉和艺术享受,它较多地利用了图形的轴对称的性质,以下几个剪纸图案是轴对称图形但不是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.在正方形ABCD中,E在BC上,BE=2,CE=1,P在BD上,则PE和PC的长度之和最小可达到$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若将30°、45°、60°的三角函数值填入表中,则从表中任意取一个值,是$\frac{{\sqrt{2}}}{2}$的概率为(  )
α30°45°60°
sinα
cosα
tanα
A.$\frac{1}{3}$B.$\frac{1}{9}$C.$\frac{2}{3}$D.$\frac{2}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.甲、乙两人在1800米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进.已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,t(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与t函数关系.那么,乙到终点后$\frac{360}{7}$秒与甲相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.用科学记数法方法表示0.0000201得(  )
A.0.201×10-4B.2.01×10-6C.20.1×10-6D.2.01×10-5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,∠1和∠2是对顶角的图形是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,AB是⊙O的直径,点C是⊙O上一点,连接AC并延长,交切线BD于点D,连接OC.若∠BOC=100°,则∠D=40度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.等腰三角形是生活中常见的几何图形,我们称有两边相等的三角形是等腰三角形,类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)如图1,在四边形ABCD中添加一个条件AB=BC,使得四边形ABCD是“等邻边四边形”;
(2)如图2,“等邻边四边形”ABCD中,AB=AD,AC=BD,且对角线AC、BD互相平分,请你证明“等邻边四边形”ABCD是正方形;
(3)如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC、BD为对角线,AC=$\sqrt{5}$AB,试探究BC、CD、BD之间的数量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案