精英家教网 > 初中数学 > 题目详情

已知:如图,△是等边三角形,点分别在边上,

(1)求证:△∽△;(2)如果,求的长.

(1)

解析试题分析:因为,根据三角形相似判定定理1,易证明△∽△.
(2)由△∽△,得,,即可求.
试题解析:证明:(1)∵△是等边三角形
                                               (1分)
               (1分)
又∵
                     (1分)
在△与△

∴△∽△                              (2分)
(2)∵△∽△
.                                      (2分)
,∵且△是等边三角形,∴
,∴,                   (2分)
.                                       (1分)
考点:相似三角形性质的应用。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

阅读理解:
如图1,若在四边形ABCD的边AB上任取一点E(点E与点A,B不重合),分别连结ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,若∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,请直接写出的值.

图1                 图2                       图3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,正△ABC中,∠ADE=60°,

(1)求证:△ABD∽△DCE;
(2)若BD=2,CD=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点E.若AE=4,CE=8,DE=3,梯形ABCD的高是,面积是54.求证:AC⊥BD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上一点(不与点A、B重合),连结CO并延长CO交⊙O于点D,连结AD.

(1)求弦长AB的长度;(结果保留根号);
(2)当∠D=20°时,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

网格图中每个方格都是边长为1的正方形.若A,B,C,D,E,F都是格点,试说明△ABC∽△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线l分别与x轴、y轴交于A、B两点,与双曲线(a≠0,x>0)分别交于D、E两点.

(1)若点D的坐标为(4,1),点E的坐标为(1,4):
① 分别求出直线l与双曲线的解析式;(3分)
② 若将直线l向下平移m(m>0)个单位,当m为何值时,直线l与双曲线有且只有一个交点?(4分)
(2)假设点A的坐标为(a,0),点B的坐标为(0,b),点D为线段AB的n等分点,请直接写出b的值.(2分)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是(  )

查看答案和解析>>

同步练习册答案