精英家教网 > 初中数学 > 题目详情
6.自从湖南与欧洲的“湘欧快线”开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.
(1)求一件A,B型商品的进价分别为多少元?
(2)若该欧洲客商购进A,B型商品共250件进行试销,其中A型商品的件数不大于B型的件数,且不小于80件.已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出.设购进A型商品m件,求该客商销售这批商品的利润v与m之间的函数关系式,并写出m的取值范围;
(3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件A型商品,就从一件A型商品的利润中捐献慈善资金a元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.

分析 (1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.根据16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,列出方程即可解决问题;
(2)根据总利润=两种商品的利润之和,列出式子即可解决问题;
(3)设利润为w元.则w=(80-a)m+70(250-m)=(10-a)m+17500,分三种情形讨论即可解决问题.

解答 解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元.
由题意:$\frac{16000}{x+10}$=$\frac{7500}{x}$×2,
解得x=150,
经检验x=150是分式方程的解,
答:一件B型商品的进价为150元,则一件A型商品的进价为160元.

(2)因为客商购进A型商品m件,所以客商购进B型商品(250-m)件.
由题意:v=80m+70(250-m)=10m+17500,
∵80≤m≤250-m,
∴80≤m≤125,

(3)设利润为w元.则w=(80-a)m+70(250-m)=(10-a)m+17500,
①当10-a>0时,w随m的增大而增大,所以m=125时,最大利润为(18750-125a)元.
②当10-a=0时,最大利润为17500元.
③当10-a<0时,w随m的增大而减小,所以m=80时,最大利润为(18300-80a)元.

点评 本题考查分式方程的应用、一次函数的应用等知识,解题的关键是理解题意,学会构建方程或一次函数解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.(-2)×(-$\frac{1}{2}$)的值是(  )
A.1B.-1C.4D.$-\frac{1}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.一元一次不等式2x-3≥-1的解集在数轴上表示为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1,还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2017次操作后得到的折痕D2016E2016,到BC的距离记为h2017;若h1=1,则h2017的值为2-$\frac{1}{{2}^{2016}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:y=$\left\{\begin{array}{l}7.5x({0≤x≤4})\\ 5x+10({4<x≤14})\end{array}$.
(1)工人甲第几天生产的产品数量为70件?
(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).
(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;
(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为$m=\left\{\begin{array}{l}20000({0≤t≤50})\\ 100t+15000({50<t≤100})\end{array}\right.$;y与t的函数关系如图所示.
①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;
②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额-总成本)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).
(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.
(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.化简:($\frac{{a}^{2}+7a-3}{{a}^{2}-9}$-$\frac{a+4}{a+3}$)÷$\frac{a+3}{a-3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.
(1)画出△ABC关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.
(2)求点B旋转到点B'的路径长(结果保留π).

查看答案和解析>>

同步练习册答案