精英家教网 > 初中数学 > 题目详情

【题目】下表是一个水文站在雨季对某条河一周内水位变化情况的记录.其中,水位上升用正数表示,水位下降用负数表示(水位变化的单位:m.

星期

变化

+0.4

-0.3

-0.4

-0.3

+0.2

+0.2

+0.1

注:①表中记录的数据为每天12时的水位与前一天12时的水位的变化量.

②上周日12时的水位高度为2m.

1)请你通过计算说明本周末水位是上升了还是下降了;

2)用折线图表示本周每天的水位,并根据折线图说明水位在本周内的升降趋势.

【答案】1)本周日水位下降了,折线图见详解;

2)本周水位星期一上升,上升到2.4m,星期二至星期四下降,下降到1.4m,星期六、星期日上升,上升到1.9m.

【解析】

1)根据题意,将每天水位变化情况全部相加,然后再判断:和为正数,说明水位上涨;反之下降。

2)根据上周日12时的水位高度为2m,求出每日的水位情况,然后作折线图,并根据图求解.

1)因为(+0.4)+(-0.3)+(-0.4)+(-0.3)+(+0.2)+(+0.2)+(+0.1)

=0.4-0.3-0.4-0.3+0.2+0.2+0.1

=-0.1<0

所以本周日水位下降了

2)根据题目数据,得出每日水位情况如下表:

星期

水位高度/m

2.4

2.1

1.7

1.4

1.6

1.8

1.9

折线图,

由折线图可看出,本周水位星期一上升,上升到2.4m,星期二至星期四下降,下降到1.4m,星期六、星期日上升,上升到1.9m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若样本x1+1x2+1xn+1的平均数为10,方差为2,则对于样本x1+2x2+2xn+2下列结论正确的是(

A. 平均数为10,方差为2 B. 平均数为11,方差为3

C. 平均数为11,方差为2 D. 平均数为12,方差为4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一次函数的图象与反比例函数的图象交于)两点与x轴,y轴分别交于AB(02)两点,如果的面积为6.

(1)求点A的坐标;

(2)求一次函数和反比例函数的解析式;

(3)如图2,连接DO并延长交反比例函数的图象于点E,连接CE,求点E的坐标和的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在ABC中,∠A=90°AB=AC=1PAC上不与AC重合的一动点,PQBCQQRABR

1)求证:PQ=CQ

2)设CP的长为xQR的长为y,求yx之间的函数关系式及自变量x的取值范围,并在平面直角坐标系作出函数图象

3PR能否平行于BC?如果能,试求出x的值;若不能,请简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于⊙P及一个矩形给出如下定义:如果⊙P上存在到此矩形四个顶点距离都相等的点,那么称⊙P是该矩形的“等距圆”.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A的坐标为(),顶点CDx轴上,且OC=OD.

(1)当⊙P的半径为4时,

①在P1),P2),P3)中可以成为矩形ABCD的“等距圆”的圆心的是

②如果点P在直线上,且⊙P是矩形ABCD的“等距圆”,求点P的坐标;

(2)已知点P轴上,且⊙P是矩形ABCD的“等距圆”,如果⊙P与直线AD没有公共点,直接写出点P的纵坐标m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.

(1)试判断直线BC与⊙O的位置关系,并说明理由;

(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】出租车司机某天上午全是在东西走向的路上运营,如果规定向东为正,向西为负,他这天行车里程(单位:千米)如下:

-9+5-7+10+5-8-4+6-5-4

1)将最后一名乘客送达时,他距出发地多远?在出发地什么方向?

2)如果每行驶1千米耗油0.4升,每升油7元,他一上午的消耗的油花费是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.

(1)求证:△ABD≌△EBD;

(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.

查看答案和解析>>

同步练习册答案