精英家教网 > 初中数学 > 题目详情

【题目】如图,现有两条乡村公路ABBCAB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路ABBCC处行驶;另一人骑自行车从B处以5m/s的速度从BC行驶,并且两人同时出发.

1)求经过多少秒摩托车追上自行车?

2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?

【答案】180秒;(270秒或90

【解析】

1)设经过x秒摩托车追上自行车,根据“摩托行驶路程=1200+骑自行车行驶路程”列出方程并解答;
2)需要分两种情况解答:①摩托车还差150米追上自行车;②摩托车超过自行车150米,根据他们行驶路程间的数量关系列出方程并解答.

解:(1)设经过x秒摩托车追上自行车,
20x=5x+1200
解得x=80
答:经过80秒摩托车追上自行车.
2)设经过y秒两人相距150米,
第一种情况:摩托车还差150米追上自行车时,
20y-1200=5y-150
解得y=70
第二种情况:摩托车超过自行车150米时,
20y=150+5y+1200
解得y=90
答:经过70秒或90秒两人在行进路线上相距150米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AEBF,∠A=60°,点P为射线AE上任意一点(不与点A重合),BCBD分别平分∠ABP和∠PBF,交射线AE于点C,点D

1)图中∠CBD= °;

2)当∠ACB=ABD时,∠ABC= °;

3)随点P位置的变化,图中∠APB与∠ADB之间的数量关系始终为 ,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点CCFBAPQ于点F,连接AF.

(1)求证:四边形AECF是菱形;

(2)若AD=3,AE=5,则求菱形AECF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化简及求值:

3ab-3b23a2+2ab﹣(5ab+2a2+4b2 a=- ,b=-1

②如图是某学校草场一角,在长为b米,宽为a米的长方形场地中间,有并排两个大小一样的篮球场,两个篮球场中间以及篮球场与长方形场地边沿的距离都为c米.

1)用代数式表示这两个篮球场的占地面积.

2)当a=30b=40c=3时,计算出一个篮球场的面积.

③已知由几个大小相同的小立方块搭成的几何体,从上面观察,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请分别画出从正面、左面看到的这个几何体的形状图.(几何体中每个小立方块的棱长都是1cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课堂上,老师在黑板上出了一道题:在同一平面内,若∠AOB=70°,∠BOC=15°24′36″,求∠AOC的度数.

下面是七年级同学小明在黑板上写的解题过程:

解:根据题意可画出图(如图1

因为∠AOB=70°,∠BOC=15°24′36″,

所以∠AOC=AOB+BOC

=70°+15°24′36″

=85°24′36″

即得到∠AOC=85°24′36″

同学们在下面议论,都说小明解答不全面,还有另一种情况.请按下列要求完成这道题的求解.

1)依照图1,用尺规作图的方法将另一种解法的图形在图2中补充完整.

2)结合第(1)小题的图形写出求∠AOC的度数的完整过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:

(1)求证:△BEF∽△DCB;

(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;

(3)如图2过点QQG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;

(4)当t为何值时,△PQF为等腰三角形?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BEAD于点F

1)求证:BDF是等腰三角形;

2)如图2,过点DDGBE,交BC于点G,连接FGBD于点O

①判断四边形BFDG的形状,并说明理由;

②若AB=6AD=8,求FG的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市居民用水实行阶梯水价,实施细则如下表:

分档水量

年用水量 (立方米)

水价 (/立方米)

第一阶梯

0~180()

5.00

第二阶梯

181~260()

7.00

第三阶梯

260以上

9.00

例如,某户家庭年使用自来水200 m3,应缴纳:180×5+(200-180)×7=1040元;

某户家庭年使用自来水300 m3,应缴纳:180×5+(260-180)×7+(300-260)×9=1820元.

(1)小刚家2017年共使用自来水170 m3,应缴纳 元;小刚家2018年共使用自来水260 m3,应缴纳 元.

(2)小强家2018年使用自来水共缴纳1180元,他家2018年共使用了多少自来水?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线相交于点.

1)求的度数;

2)若的平分线,那么的平分线吗?说明你的理由.

查看答案和解析>>

同步练习册答案