如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为 .
科目:初中数学 来源: 题型:
某水果批发市场香蕉的价格如表:
购买香蕉数 (kg) | 不超过 20kg | 20kg以上 但不超过40kg | 40kg 以上 |
每kg价格 | 8元 | 7元 | 6元 |
若小强购买香蕉xkg(x大于40kg)付了y元,则y关于x的函数解析式为 .(写出自变量的取值范围)
查看答案和解析>>
科目:初中数学 来源: 题型:
甲、乙两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,则下列说法正确的是( )
A.甲、乙两人的速度相同
B.甲先到达终点
C.乙用的时间短
D.乙比甲跑的路程多
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B'处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
A.12 B.24 C.12 D.16
查看答案和解析>>
科目:初中数学 来源: 题型:
阅读以下短文,然后解决下列问题:
如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”.如图①所示,矩形ABEF即为△ABC的“友好矩形”.显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.
(1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”.
(2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小.
(3)若△ABC是锐角三角形,且BC>AC>AB,在图③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是( )
A.AB=BC B.AC=BC
C.∠B=60° D.∠ACB=60°
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平行四边形ABCD中,E为BC边上的一点,连接AE,BD且AE=AB.
(1)求证:∠ABE=∠EAD.
(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com