精英家教网 > 初中数学 > 题目详情
精英家教网如图,一次函数y=ax+b的图象与反比例函数y=
kx
的图象交于M、N两点.
(1)利用图中条件,求反比例函数和一次函数的解析式;
(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围;
(3)在x轴上是否存在点P,使△MOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.
分析:(1)将点N的坐标代入反比例函数的解析式可求出k的值,将M和N的坐标代入一次函数解析式,联立求解可得出一次函数的解析式.
(2)寻找反比例函数图象在一次函数图象之上的x的取值范围即可.
(3)分两种情况进行寻找,①当OM为腰时,②当OM为底时,这样即可寻找出符合条件的点P的坐标.
解答:解:(1)∵反比例函数y=
k
x
图象过点N(-1,-4),M(2,m),
∴k=(-1)×(-4)=4,m=
k
2
=
4
2
=2,
将点M、N的坐标代入一次函数解析式y=ax+b中,
可得
2a+b=2
-a+b=-4

解得
a=2
b=-2

∴一次函数的解析式为y=2x-2,反比例函数的解析式为y=
4
x


(2)根据图象可得当0<x<2或x<-1时,反比例函数y=
4
x
的值大于一次函数y=2x-2的值;

(3)OM=
22+22
=2
2
,OM与x轴的夹角为45°,
①当OM为腰时,由OM=OP得P1(2
2
,0),P2(-2
2
,0);由OM=MP得,P3(4,0);
②当OM为底时,得P4(2,0);
∴符合条件的有4个,分别为:P1(2
2
,0),P2(-2
2
,0),P3(4,0),P4(2,0).
点评:此题考查了反比例函数的综合题,涉及到了待定系数法求函数解析式及等腰三角形的知识,综合性较强,解答本题的关键是正确确定两函数的解析式,要求我们能根据函数图象判断该函数值的大小,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y=kx+2的图象与反比例函数y=
m
x
的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
OC
OA
=
1
2

(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,一次函数y1=-x-1与反比例函数y2=-
2
x
图象相交于点A(-2,1)、B(1,-2),则使y1>y2的x的取值范围是(  )
A、x>1
B、x<-2或0<x<1
C、-2<x<1
D、-2<x<0或x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•成都)如图,一次函数y1=x+1的图象与反比例函数y2=
kx
(k为常数,且k≠0)的图象都经过点
A(m,2)
(1)求点A的坐标及反比例函数的表达式;
(2)结合图象直接比较:当x>0时,y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数y=
4x
(x>0)
的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.

查看答案和解析>>

同步练习册答案