精英家教网 > 初中数学 > 题目详情

)已知,如图,现有的正方形纸片和的矩形纸片各若干块,试选用这些纸片(每种纸片至少用一次)在下面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使拼出的矩形面积为a2+3ab+2b2,并标出此矩形的长和宽.

长为a+2b,宽为a+b   
 

解析考点:作图—应用与设计作图.
分析:面积为2a2+5ab+2b2,那么最小的正方形使用2次,较大的正方形使用2次,边长为a,b的长方形使用5次.
解答:解:说明:答案不唯一,画图正确,不论画在什么位置,
只要符合题意即可.不标出相应尺寸的扣(2分),标错1个或少标1个扣(1分).

点评:应根据题中所给的矩形的面积判断出各个图形使用的次数,进而进行拼合.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

3、已知,如图,现有a×a、b×b的正方形纸片和a×b的长方形纸片各若干块,试选用这些纸片(每种纸片至少用一次)拼成一个长方形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹,画出的图形尽可能跟原图一样标准),使拼出的长方形面积为2a2+5ab+2b2,并标出此长方形的长和宽.

查看答案和解析>>

科目:初中数学 来源: 题型:

观察下列方程和等式,寻找规律,完成问题:
①方程x2-7x+6=0,x1=1,x2=6,而x2-7x+6=(x-1)(x-6);
②方程x2-4x-5=0,x1=5,x2=-1,而x2-4x-5=(x-5)(x+1);
③方程4x2-12x+9=0,x1=
3
2
x2=
3
2
,而4x2-12x+9=4(x-
3
2
)(x-
3
2
)

④方程3x2+7x+4=0,x1=-
4
3
,x2=-1,而3x2+7x+4=3(x+
4
3
)(x+1)
;…
(1)探究规律:当方程ax2+bx+c=0(a≠0)时,
 

(2)解决问题:根据上述材料将下列多项式分解:x2-x-2;2x2+3x-2
(3)拓广应用:已知,如图,现有1×1,a×a的正方形纸片和1×a的矩形纸片各若干块,试选用这些纸片(每种纸片至少用一次)在下面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使拼出的矩形面积为2a2+5a+2,并标出此矩形的长和宽.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知:如图①,现有a×a,b×b的正方形纸片和a×b的长方形纸片各若干块.

(1)图②是用这些纸片拼成的一个长方形,(每两个纸片之间既不重叠,也无空隙),利用这个长方形的面积,写出一个代数恒等式
(a+b)(a+2b)=a2+3ab+2b2

(2)试选用图①中的纸片(每种纸片至少用一次)在下面的方框中拼成与图②不同的一个长方形,(拼出的图中必须保留拼图的痕迹),标出此长方形的长和宽,并利用拼成的长方形面积写出一个代数恒等式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论.

查看答案和解析>>

同步练习册答案