精英家教网 > 初中数学 > 题目详情
如图,∠AOB=30°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD等于   
【答案】分析:根据角平分线的性质,角平分线上的点到两角的距离相等,因而过P作PE⊥OA于点E,则PD=PE,因为PC∥OB,得角相等,而OP平分∠AOB,得∴∠ECP=∠COP+∠OPC=30°根据三角形的外角的性质得到答案.
解答:解:过P作PE⊥OA于点E,则PD=PE,
∵PC∥OB,∠AOB=30
∴∠ECP=∠AOB=30°
在Rt△ECP中,PE=PC=3
∴PD=PE=3.
点评:本题主要考查了角平分线的性质,角平分线上的点到角的两边距离相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,∠AOB=30°,M为OB边上任意一点,以M为圆心,r为半径的⊙M,当⊙M与OA相切时,OM=2cm,则r=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,∠AOB=30°,射线OA上有一动点H(点H不与点O重合),PH⊥OA交OB于点P,线段PH沿着射线OA方向平移,则线段OP与线段PH之间始终存在数量关系:OP=
2
PH.

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠AOB=30°,点P为∠AOB内一点,OP=10,点M、N分别在OA、OB上,求△PMN周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠AOB=30°,内有一点P且OP=
6
,若M、N为边OA、OB上两动点,那么△PMN的周长最小为(  )

查看答案和解析>>

同步练习册答案