11£®Èçͼ1£¬ÔÚ¡÷ABCÖУ®¡ÏC=90¡ã£¬AC£¾BC£¬Õý·½ÐÎCDEFµÄ¶¥µãDÔÚ±ßACÉÏ£¬µãFÔÚÉäÏßCBÉÏÉèCD=x£¬Õý·½ÐÎCDEFÓë¡÷ABCÖصþ²¿·ÖµÄÃæ»ýΪS£¬S¹ØÓÚxµÄº¯ÊýͼÏóÈçͼ2Ëùʾ£¨ÆäÖÐ0£¼x¡Üm£¬m£¼x¡Ü2£¬2£¼x¡Ünʱ£¬º¯ÊýµÄ½âÎöʽ²»Í¬£©£®
£¨1£©Ìî¿Õ£ºmµÄֵΪ$\frac{3}{2}$£»
£¨2£©ÇóS¹ØÓÚxµÄº¯Êý½âÎöʽ£¬²¢Ð´³öxµÄÈ¡Öµ·¶Î§£»
£¨3£©SµÄÖµÄÜ·ñΪ$\frac{13}{2}$£¿ÈôÄÜ£¬Ö±½Óд³ö´ËʱxµÄÖµ£»Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©µ±0£¼x¡Ümʱ£¬½áºÏͼÐοÉÖªS=x2£¬°Ñµã£¨m£¬$\frac{9}{4}$£©´úÈë¿ÉÇóµÃmµÄÖµ£»
£¨2£©½áºÏͼÐεı任¿ÉÖªµ±m£¼x¡Ü2ʱ£¬µãFÔ˶¯µ½µãB£¬¿ÉÇóµÃBC£¬µ±x=mʱ£¬¿ÉµÃ¡÷BEF¡×¡÷BAC£¬ÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊ¿ÉÇóµÃACµÄ³¤£¬µ±m£¼x¡Ü2£¬ÉèAB·Ö±ð½»DE¡¢EFÓÚµãP¡¢QÁ½µã£¬¿ÉÓÃx·Ö±ð±íʾ³öPEºÍQE£¬S=SÕý·½ÐÎCDEF-S¡÷PEQ£¬¿ÉµÃµ½SÓëxµÄ¹Øϵʽ£¬µ±2£¼x¡Ünʱ£¬ÉèAB½»DEÓÚµãH£¬¿ÉÓÃx±íʾ³öAPºÍPH£¬ÔòÓÐS=S¡÷ABC-S¡÷APH£¬¿ÉµÃµ½SÓëxµÄ¹Øϵʽ£¬´Ó¶ø¿ÉÇóµÃº¯Êý½âÎöʽ£»
£¨3£©ÀûÓã¨2£©ÖÐËùÇóµÃ¹Øϵʽ£¬·Ö±ðÁîS=$\frac{13}{2}$£¬½âÏàÓ¦µÄ·½³Ì½øÐÐÅжϼ´¿É£®

½â´ð ½â£º£¨1£©µ±0£¼x¡Ümʱ£¬Èçͼ1£¬

Ôò¿ÉÖªµãF´ÓCµãÔ˶¯µ½µãEÔ˶¯µ½ABÉÏ£¬
¡àS=x2£¬
¡ßµã£¨m£¬$\frac{9}{4}$£©ÔÚº¯ÊýͼÏóÉÏ£¬
¡àm2=$\frac{9}{4}$£¬½âµÃm=$\frac{3}{2}$»òm=-$\frac{3}{2}$£¨ÉáÈ¥£©£¬
¹Ê´ð°¸Îª£º$\frac{3}{2}$£»
£¨2£©µ±$\frac{3}{2}$£¼x¡Ü2ʱ£¬¿ÉÖªµãF´ÓEµãÔÚABÉÏÔ˶¯µ½Bµã£¬
¡àBC=2£¬
ÔÚͼ1ÖУ¬ÓÉEF¡ÎAC£¬
¡à¡÷BEF¡×¡÷BAC£¬
¡à$\frac{BF}{BC}$=$\frac{EF}{AC}$£¬ÇÒCF=EF=$\frac{3}{2}$£¬BF=BC-CF=2-$\frac{3}{2}$=$\frac{1}{2}$£¬
¡à$\frac{\frac{1}{2}}{2}$=$\frac{\frac{3}{2}}{AC}$£¬½âµÃAC=6£¬
¢Ùµ±0£¼x¡Ü$\frac{3}{2}$ʱ£¬ÓÉ£¨1£©¿ÉÖªS=x2£»
¢Úµ±$\frac{3}{2}$£¼x¡Ü2ʱ£¬ÉèAB·Ö±ð½»DE¡¢EFÓÚµãP¡¢QÁ½µã£¬Èçͼ2£¬

µ±CD=CF=DE=EF=xʱ£¬BF=2-x£¬AD=6-x£¬
¡ßEF¡ÎAC£¬
¡à$\frac{BF}{BC}$=$\frac{FQ}{AC}$£¬¼´$\frac{2-x}{2}$=$\frac{FQ}{6}$£¬
¡àFQ=3£¨2-x£©£¬
¡àQE=EF-FQ=x-3£¨2-x£©=4x-6£¬
ͬÀí¿ÉµÃ$\frac{PD}{BC}$=$\frac{AD}{AC}$£¬¼´$\frac{PD}{2}$=$\frac{6-x}{6}$£¬
¡àPD=$\frac{1}{3}$£¨6-x£©£¬
¡àPE=DE-PD=x-$\frac{1}{3}$£¨6-x£©=$\frac{1}{3}$£¨4x-6£©£¬
¡àS¡÷PEQ=$\frac{1}{2}$PE•PQ=$\frac{1}{2}$¡Á$\frac{1}{3}$£¨4x-6£©•£¨4x-6£©=$\frac{1}{6}$£¨4x-6£©2£¬
¡àS=SÕý·½ÐÎCDEF-S¡÷PEQ=x2-$\frac{1}{6}$£¨4x-6£©2=-$\frac{5}{3}$x2+8x-6£»
¢Ûµ±2£¼x¡Ü6ʱ£¬¼´µãF´ÓBµãÔ˶¯µ½Ê¹A¡¢DÖغϣ¬ÉèAB½»DEÓÚµãH£¬Èçͼ3£¬

µ±CD=xʱ£¬ÔòAD=6-x£¬
ͬÀí¿ÉµÃ$\frac{DH}{BC}$=$\frac{AD}{AC}$£¬¼´$\frac{DH}{2}$=$\frac{6-x}{6}$£¬
¡àDH=$\frac{1}{3}$£¨6-x£©£¬
¡àS¡÷ADH=$\frac{1}{2}$DH•AD=$\frac{1}{2}$¡Á$\frac{1}{3}$£¨6-x£©•£¨6-x£©=$\frac{1}{6}$£¨6-x£©2£¬ÇÒS¡÷ABC=$\frac{1}{2}$AC•BC=6£¬
¡àS=S¡÷ABC-S¡÷APH=6-$\frac{1}{6}$£¨6-x£©2=-$\frac{1}{6}$x2+2x£»
×ÛÉÏ¿ÉÖªS=$\left\{\begin{array}{l}{{x}^{2}£¨0£¼x£¼\frac{3}{2}£©}\\{-\frac{5}{3}{x}^{2}+8x-6£¨\frac{3}{2}£¼x¡Ü2£©}\\{-\frac{1}{6}{x}^{2}+2x£¨2£¼x¡Ü6£©}\end{array}\right.$£¬ÇÒ0£¼x¡Ü6£»
£¨3£©ÈôS=$\frac{13}{2}$£¬ÔòÓÐÈýÖÖÇé¿ö£¬
¢Ùµ±x2=$\frac{13}{2}$ʱ£¬Ôòx=¡À$\frac{\sqrt{26}}{2}$£¬µ±x=-$\frac{\sqrt{26}}{2}$ʱÏÔÈ»²»Âú×ãÌõ¼þ£¬µ±x=$\frac{\sqrt{26}}{2}$ʱ£¬$\frac{\sqrt{26}}{2}$£¾$\frac{3}{2}$£¬Ò²²»Âú×ãÌõ¼þ£»
¢Úµ±-$\frac{5}{3}$x2+8x-6=$\frac{13}{2}$ʱ£¬ÕûÀí¿ÉµÃ10x2-48x+75=0£¬¸Ã·½³ÌÅбðʽ¡÷=482-4¡Á10¡Á75£¼0£¬¼´¸Ã·½³ÌÎÞʵÊý½â£»
¢Ûµ±-$\frac{1}{6}$x2+2x=$\frac{13}{2}$ʱ£¬ÕûÀí¿ÉµÃx2-12x+39=0£¬¸Ã·½³ÌÅбðʽ¡÷=122-4¡Á39£¼0£¬¼´¸Ã·½³ÌÎÞʵÊý½â£»
×ÛÉÏ¿ÉÖªSµÄÖµ²»ÄÜΪ$\frac{13}{2}$£®

µãÆÀ ±¾ÌâΪËıßÐεÄ×ÛºÏÓ¦Óã¬É漰֪ʶµãÓÐÕý·½ÐεÄÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢Ò»Ôª¶þ´Î·½³Ì¼°·ÖÀàÌÖÂ۵ȣ®È·¶¨³öÕý·½ÐÎËùÔ˶¯µ½µÄλÖÃÓë¶ÔÓ¦µÄº¯ÊýͼÏóÖжÔÓ¦µÄµãÊǽâÌâµÄ¹Ø¼ü£¬ÔÚ£¨2£©¡¢£¨3£©ÖÐÈ·¶¨³öACºÍBCµÄ³¤ÊǽâÌâµÄ¹Ø¼ü£®±¾Ì⿼²é֪ʶµã½Ï¶à£¬×ÛºÏÐÔ½ÏÇ¿£¬ÌرðÊǵڣ¨2£©ÎÊÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÏ߶ÎAB=14cm£¬CΪÏ߶ÎABÉÏÈÎÒ»µã£¬DÊÇACµÄÖе㣬EÊÇCBµÄÖе㣬ÇóDEµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ð¡Ã÷ͬѧÔڽⷽ³Ì×é$\left\{\begin{array}{l}y=kx+b\\ y=-2x.\end{array}\right.$µÄ¹ý³ÌÖУ¬´í°Ñb¿´³ÉÁË6£¬ÆäÓàµÄ½âÌâ¹ý³ÌûÓгö´í£¬½âµÃ´Ë·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}x=-1\\ y=2.\end{array}\right.$£¬ÓÖÒÑÖªÖ±Ïßy=kx+b¹ýµã£¨3£¬1£©£¬ÔòbµÄÕýÈ·ÖµÓ¦¸ÃÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èçͼ1£¬ËıßÐÎABCDÊÇÁâÐΣ¬¶Ô½ÇÏßAC£¬BDÏཻÓÚµãO£¬AB=2ÀåÃ×£¬¡ÏBAD=60¡ã£®P£¬QÁ½µãͬʱ´ÓµãO³ö·¢£¬ÒÔ1ÀåÃ×/ÃëµÄËÙ¶ÈÔÚÁâÐεĶԽÇÏß¼°±ßÉÏÔ˶¯£®ÉèÔ˶¯µÄʱ¼äΪxÃ룬P£¬Q¼äµÄ¾àÀëΪyÀåÃ×£¬yÓëxµÄº¯Êý¹ØϵµÄͼÏó´óÖÂÈçͼ2Ëùʾ£¬ÔòP£¬QµÄÔ˶¯Â·Ïß¿ÉÄÜΪ£¨¡¡¡¡£©
A£®µãP£ºO-A-D-C£¬µãQ£ºO-C-D-OB£®µãP£ºO-A-D-O£¬µãQ£ºO-C-B-O
C£®µãP£ºO-A-B-C£¬µãQ£ºO-C-D-OD£®µãP£ºO-A-D-O£¬µãQ£ºO-C-D-O

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬ÒÑÖªl1¡Íl2£¬¡ÑOÓël1£¬l2¶¼ÏàÇУ¬¡ÑOµÄ°ë¾¶Îª2cm£®¾ØÐÎABCDµÄ±ßAD£¬AB·Ö±ðÓël1£¬l2Öغϣ¬AB=4$\sqrt{3}$cm£¬AD=4cm£®Èô¡ÑOÓë¾ØÐÎABCDÑØl1ͬʱÏòÓÒÒƶ¯£¬¡ÑOµÄÒƶ¯ËÙ¶ÈΪ3cm/s£¬¾ØÐÎABCDµÄÒƶ¯ËÙ¶ÈΪ4cm/s£¬ÉèÒƶ¯Ê±¼äΪt£¨s£©£®
£¨1£©Èçͼ¢Ú£¬Á½¸öͼÐÎÒƶ¯Ò»¶Îʱ¼äºó£¬¡ÑOµ½´ï¡ÑO1µÄλÖ㬾ØÐÎABCDµ½´ïA1B1C1D1µÄλÖ㬴ËʱµãO1£¬A1£¬C1Ç¡ºÃÔÚͬһֱÏßÉÏ£¬ÔòÒƶ¯Ê±¼ät=2+$\frac{2}{3}$$\sqrt{3}$£®
£¨2£©ÔÚÒƶ¯¹ý³ÌÖУ¬Ô²ÐÄOµ½¾ØÐζԽÇÏßACËùÔÚÖ±ÏߵľàÀëÔÚ²»¶Ï±ä»¯£¬Éè¸Ã¾àÀëΪd£¨cm£©£®µ±d£¼2ʱ£¬ÇótµÄÈ¡Öµ·¶Î§2-$\frac{2}{3}$$\sqrt{3}$£¼t£¼2+2$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£ºa£¨a-2£©-£¨a+3£©£¨a-3£©£¬ÆäÖÐa=-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®½â·½³ÌÓë²»µÈʽ×飺
£¨1£©½â·½³Ì×é$\left\{\begin{array}{l}x+y=-1\\ x-2y=5.\end{array}$             
£¨2£©½â²»µÈʽ×é$\left\{\begin{array}{l}3x+1£¼2£¨x+2£©\\-\frac{x}{3}¡Ü\frac{5x}{3}+2.\end{array}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èôº£Æ½ÃæÒÔÉÏ2000Ã×¼Ç×ö¡°+2000Ãס±£¬ÄÇôº£Æ½ÃæÒÔÏÂ3000Ã×¼Ç×ö¡°-3000Ãס±£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¼ÆË㣺£¨$\sqrt{3}$+$\sqrt{2}$-1£©£¨$\sqrt{3}$-$\sqrt{2}$+1£©=2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸