精英家教网 > 初中数学 > 题目详情
如图所示,O是△ABC的∠ABC.∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC = 10,则△ODE的周长为       .
10cm.

试题分析:∵OC、OB分别是∠ACB、∠ABC的角平分线,∴∠5=∠6,∠1=∠2.
∵OD∥AB,OE∥AC,∴∠4=∠6,∠1=∠3.
∴∠4=∠5,∠2=∠3.∴OD=BD,OE=CE.
∴△ODE的周长=OD+DE+OE=BD+DE+CE=BC=10cm.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,AB=5,P是BC边上任意一点,E是BC延长
线上一点,连接AP,作PF⊥AP,使PF=PA,连接CF,AF,AF交CD边于点G,连接PG.
(1)求证:∠GCF=∠FCE;
(2)判断线段PG,PB与DG之间的数量关系,并证明你的结论;
(3)若BP=2,在直线AB上是否存在一点M,使四边形DMPF是平行四边形,若存在,求出BM的长度,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(10分)如图所示,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM,求证: ME=BD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD中,∠A=∠C=900平分∠A BC交CD于E,DF平分∠A DC交AB于F
(1)若∠ABC=600,则∠ADC=       °, ∠ADF=       °;
(2)BE与DF平行吗?试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

以下是小辰同学阅读的一份材料和思考:
五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).
小辰阅读后发现,拼接前后图形的面积相等,若设新的正方形的边长为x(x>0),可得x2=5,x=.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长.
参考上面的材料和小辰的思考方法,解决问题:
五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.
具体要求如下:
(1)设拼接后的长方形的长为a,宽为b,则a的长度为          ;
(2)在图④中,画出符合题意的两条分割线(只要画出一种即可);
(3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在□ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在△ABC中,∠ACB=90°,BC=15,AC=20,CD是高.
(1)求△ABC的面积;(2)求CD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDC绕B点旋转,则在旋转过程中,AE与CD的大小关系为(    )

A.AE=CD    B.AE>CD    C AE<CD    D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC在直角坐标系中, AB=AC,A(0,2),C(1,0), D为射线AO上一点,一动点P从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个运动时间最少,则点D的坐标应为(    )
A.(0,)B.(0,)C.(0,)D.(0,)

查看答案和解析>>

同步练习册答案