精英家教网 > 初中数学 > 题目详情

如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.

⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2
⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)

(1)3++;(2)3.

解析试题分析:(1)以O为位似中心,作△ABC的位似图形,使相似比为1:2,
(2)根据所作三角形三点的位置写出对应三角形边长,进而求出三角形周长和面积.
试题解析:(1)如图所示:

(2)如图所示:
∵B′C′=3,A′O=2,A′B′=,A′C′=
∴△A′B′C′的周长为:3++
△A′B′C′的面积为:×A′O×B′C′=×2×3=3.
考点:作图――位似变换.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,∠B= 90°,点P从A点开始沿AB边向点B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动。

(1)如果P、Q分别从A、B两点同时出发,经过几秒钟,△PBQ的面积等于8厘米2
(2)如果P、Q两分别从A、B两点同时出发,并且P到B又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒钟,△PCQ的面积等于12﹒6厘米2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在△ABC中,D,E分别是AB,AC上一点,且∠AED =∠B.若AE=5,AB=9,CB=6.

(1)求证:△ADE∽△ACB;(2)求ED的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:正方形ABCD的边长为1,射线AE与射线BC交于点E,射线AF与射线CD交于点F,∠EAF=45°.
(1)如图1,当点E在线段BC上时,试猜想线段EF、BE、DF有怎样的数量关系?并证明你的猜想.

(2)设BE=x,DF=y,当点E在线段BC上运动时(不包括点B、C),如图1,求y关于x的函数解析式,并指出x的取值范围.
(3)当点E在射线BC上运动时(不含端点B),点F在射线CD上运动.试判断以E为圆心以BE为半径的⊙E和以F为圆心以FD为半径的⊙F之间的位置关系.
(4)当点E在BC延长线上时,设AE与CD交于点G,如图2.问⊿EGF与⊿EFA能否相似,若能相似,求出BE的值,若不可能相似,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直角△ABC中,∠C=90°,AB=2,sinB=,点P为边BC上一动点,PD∥AB,PD交AC于点D,连结AP.

(1)求的长;
(2)设的长为的面积为.当为何值时,最大并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,矩形ABCD中,AB=21,AD=12,E是CD边上的一点,CE=5,M是BC边上的中点,动点P从点A出发,沿AB边以每秒1个单位长度的速度向终点B运动,连结PM.设动点P的运动时间是t秒.

(1)求线段AE的长;
(2)当△ADE与△PBM相似时,求t的值;
(3)如图2,连接EP,过点P作PH⊥AE于H.①当EP平分四边形PMEH的面积时,求t的值;②以PE为对称轴作线段BC的轴对称图形B′C′,当线段B′C′与线段AE有公共点时,写出t的取值范围(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.

(1)画出位似中心点O;
(2)直接写出△ABC与△A′B′C′的位似比;
(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.

(1)设Rt△CBD的面积为S1, Rt△BFC的面积为S2, Rt△DCE的面积为S3 , 则S1       S2+ S3(用“>”、“=”、“<”填空);
(2)写出图中的三对相似三角形,并选择其中一对进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC的中点,EF与BD相交于点M。

(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.

查看答案和解析>>

同步练习册答案