精英家教网 > 初中数学 > 题目详情
5.画图题,保留作图痕迹,不写作法.
(1)如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?
(2)如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE的周长最小.

分析 (1)利用要使所用的输气管线最短则作A点关于直线l的对称点A′,连接A′B,与直线l交于点P,P点即为所求;
(2)根据(1)的作法,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求.

解答 解:(1)如图(1)所示:当在P′点位置,可得A′P′+BP′>A′B,即P点位置较短,同理可得,
点P即为所求,


(2)如图(2)所示:作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求;

点评 此题主要考查了利用轴对称求最短路径以及三角形中位线的知识,根据已知得出要求△PDE周长的最小值,求出DP+PE的最小值即可是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.阅读下面材料:
在数学课上,老师提出如下问题:

已知如图1所示Rt△ABC,∠ABC=90°.求作:矩形ABCD.
小明的作法如下:
①作线段AC的垂直平分线交AC于点O;
②连接BO并延长,在延长线上截取OD=BO;
③连接DA,DC.则四边形ABCD即为所求(图2所示).
老师说:“小明的作法正确.”
请回答:小明的作图依据是对角线互相平分且相等的四边形是平行四边形.
参考小明的作法,完成如下问题:
已知:如图3,△ABC.求作:平行四边形ABCD.
说明:用两种方法完成;保留作图痕迹;不用写作法.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.顺次连结菱形四边中点所得的四边形一定是(  )
A.正方形B.矩形C.菱形D.等腰梯形

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在菱形ABCD中,E是AB的中点,F是AC的中点,如果EF=4,那么CD=8.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为(  )
A.(3,4)或(2,4)B.(2,4)或(8,4)C.(3,4)或(8,4)D.(3,4)或(2,4)或(8,4)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.函数y=$\frac{\sqrt{x+2}}{x-1}$中自变量x的取值范围是x≥-2且x≠1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,在平面直角坐标系中有A,B两点,其中点A的坐标是(-2,1),点B的横坐标是2,连接AO,BO.已知∠AOB=90°,则点B的纵坐标是(  )
A.2$\sqrt{5}$B.4C.$\sqrt{5}$D.2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知△ABC的三边长a,b,c满足$\sqrt{a-2}$+|b-2|+(c-2$\sqrt{2}$)2=0,则△ABC一定是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,下列三个条件:①AB∥CD,②∠B=∠C,③∠E=∠F.
从中任选两个作为条件,另一个作为结论,共可编出几道数学题,并选一道数学题进行证明.

查看答案和解析>>

同步练习册答案