精英家教网 > 初中数学 > 题目详情
2.求下列各式中x的值
(1)4x2-16=0
(2)$\frac{1}{3}{x^3}-9=0$.

分析 (1)方程整理后,开方即可求出x的值;
(2)方程整理后,开立方即可求出x的值.

解答 解:(1)方程整理得:x2=4,
开方得:x=±2;
(2)方程整理得:x3=27,
开立方得:x=3.

点评 此题考查了平方根,以及立方根,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.观察下面计算过程:
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)=(1-$\frac{1}{2}$)(1+$\frac{1}{2}$) (1-$\frac{1}{3}$)(1+$\frac{1}{3}$)=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$=$\frac{1}{2}$×$\frac{4}{3}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$=$\frac{1}{2}$×$\frac{5}{4}$;
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)(1-$\frac{1}{{5}^{2}}$)=$\frac{1}{2}$×$\frac{3}{2}$×$\frac{2}{3}$×$\frac{4}{3}$×$\frac{3}{4}$×$\frac{5}{4}$×$\frac{4}{5}$×$\frac{6}{5}$=$\frac{1}{2}$×$\frac{6}{5}$;…
你发现了什么规律?用含n的式子表示这个规律,并用你发现的规律直接写出
(1-$\frac{1}{{2}^{2}}$)(1-$\frac{1}{{3}^{2}}$)(1-$\frac{1}{{4}^{2}}$)…(1-$\frac{1}{201{2}^{2}}$)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.阅读下面的材料:
我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式a2-2a+5的最小值.
方法如下.
∵a2-2a+5=a2-2a+1+4=(a-1)2+4,由(a-1)2≥0,得(a-1)2+4≥4;
∴代数式a2-2a+5的最小值是4.
(1)仿照上述方法求代数式x2+6x-5的最小值.
(2)代数式-a2-4a+10有最大值还是最小值?请用配方法求出这个最值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知|a+b-4|+(ab+15)2=0,求下列各式的值.
(1)2a2+2b2
(2)a2-ab+b2
(3)(a-b)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.小用火柴棍按下列方式摆图形,第1个图形用了4根火柴棍,第2个图形用了10根火柴棍,第3个图形用了18根火柴棍.依照此规律,若第n个图形用了70根火柴棍,则n的值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知:$\frac{1}{\sqrt{2}+1}=\sqrt{2}-1$,$\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\sqrt{2}$,$\frac{1}{\sqrt{4}+\sqrt{3}}=\sqrt{4}-\sqrt{3}$,…,则
$(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+…+$$\frac{1}{\sqrt{2016}+\sqrt{2015}})$$(\sqrt{2016}+1)$=2015.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)$\sqrt{12}$-$\sqrt{27}$+3$\sqrt{\frac{1}{3}}$
(2)$\sqrt{2\frac{2}{3}}$÷$\sqrt{\frac{4}{3}}$×$\frac{1}{\sqrt{2}-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,小丽从A点出发前进10m,向右转24°,再前进10m,又向右转24°,…,这样一直走下去,他第一次回到出发点A时,一共走了150m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.先化简,再求值:(a+b)(a-b)+(4ab3-8a2b2)÷4ab,其中a=2,b=3.

查看答案和解析>>

同步练习册答案