精英家教网 > 初中数学 > 题目详情

某商店将进价为每件80元的某种商品按每件100元出售,每天可售出100件.经过市场调查,发现这种商品每件每降低1元,其销售量就可增加10件.
(1)设每件商品降低售价元,则降价后每件利润        元,每天可售出        件(用含的代数式表示);
(2)如果商店为了每天获得利润2160元,那么每件商品应降价多少元?

(1)(20-x),(100+10x);(2)2或8.

解析试题分析:(1)利润=售价-进价,降低1元增加10件,可知降低x元增加10x件,进而可用含x的代数式表示;
(2)将问题转化为求函数最值问题来解决,从而求出最大利润.
试题解析:(1)原来售价100,进价80,利润为20元,又降价x元后,利润为(20-x).
每降价一元,销量增加10件,说明降价x元,销量增加10x件,现在的销量为(100+10x);
(2)设每件商品降价x元.
(20-x)×(100+10x)=2160,
解得:x1=2,x2=8,
答:每件商品应降价2元或8元.
考点: 二次函数的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

某商品的进价为每件50元,售价为每件60元,每个月可卖出200件;如果每件商品的售价每上涨1元.则每个月少卖10件。设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1) 求y与x的函数关系式
(2) 每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3) 若每个月的利润不低于2160元,售价应在什么范围?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某跳水运动员进行10m跳台跳水的训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为己知条件).在跳某个规定动作时,正确情况下,该运动员在空中的最高处距水面m,入水处与池边的距离为4m, 同时,运动员在距水面高度为5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.

(l)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为,问:此次跳水会不会失误?通过计算说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A.B.C,求ac的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交于点C.

(1)分别求出点A、B、C的坐标;
(2)设抛物线的顶点为M,求四边形ABMC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

动物园计划用长为120米的铁丝围成如图所示的兔笼,(不包括顶棚)供学习小组的同学参观,其中一面靠墙,(墙足够长)怎样设计围成的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线过x轴上两点A(9,0),C(-3,0),且与y轴交于点B(0,-12).

(1)求抛物线的解析式;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,△APQ∽△AOB?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数的图象经过点(4,3),(3,0).

(1)求b、c的值;
(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象;
(3)该函数的图像经过怎样的平移得到的图像?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,抛物线经过点A的坐标为(m,m),点B的坐标为(n,-n),且经过原点O,连接OA、OB、AB,线段AB交y轴于点C.已知实数m,n(m<n)分别是方程x2-2x-3=0的两根.

(1)求m,n的值.
(2)求抛物线的解析式.
(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD,BD.当△OPC为等腰三角形时,求点P的坐标.

查看答案和解析>>

同步练习册答案