精英家教网 > 初中数学 > 题目详情

【题目】正方形、…按如图所示的方式放置.、…和点、…分别在直线轴上,则点的坐标是__________.(为正整数)

【答案】

【解析】由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,又An的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标为[A(n+1)的横坐标,An的纵坐标].

由图和条件可知A1(0,1)A2(1,2)A3(3,4),B1(1,1),B2(3,2),

Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,

An的横坐标数列为An=2n-1-1,所以纵坐标为2n-1

Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n-1,2n-1).

故答案为:(2n-1,2n-1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】银泰百货名创优品店购进600个钥匙扣,进价为每个8元,第一周以每个12元的价格售出200个,第二周若按每个12元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售.据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价,单价降低元销售,销售一周后,商店对剩余钥匙扣清仓处理,以每个6元的价格全部售出.

1)如果这批钥匙扣共获利1050元,那么第二周每个钥匙扣的销售价格为多少元?

2)这次降价活动,1050元是最高利润吗?若是,说明理由;若不是,求出最高利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

问题背景:

我们知道,三角形的中位线平行于三角形的第三边,并且等于第三边的一半,如何证明三角形中位线定理呢?

已知:如图1,在中,分别是的中点.

求证:

问题中既要证明两条线段所在的直线平行,又要证明其中一条线段的长等于另一线段长的一半.所以可以用“倍长法”将延长一倍:延长,使得,连接这样只需证明,且.由于的中点,容易证明四边形、四边形是平行四边形,证明...

问题解决:

上述材料中“倍长法”体现的数学思想主要是_____ (填入选项前的字母代号即可)

A.数形结合思想 B.转化思想 C.分类讨论思想 D.方程思想

证明四边形是平行四边形的依据是

反思交流:

“智慧小组”在证明中位线定理时,在图1的基础上追加了如上辅助线作法:如图3,分别过点的垂线,垂足分别为,..

请你根据“智慧小组”添加的辅助线,证明三角形的中位线定理.

方法迁移:

如图4、四边形都是正方形,的中点.求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:

(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为

(2)连接AD、CD,求D的半径及扇形DAC的圆心角度数;

(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,CDAB于点DDA=DC=4DB=2AFBC于点F,交DC于点E

1)求线段AE的长;

2)若点GAC的中点,点M是线段CD上一动点,连结GM,过点GGNGM交直线AB于点N,记CGM的面积为S1AGN的面积为S2.在点M的运动过程中,试探究:S1S2的数量关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx+3x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.

1)求直线BC的函数表达式;

2)设点Mx轴上的一个动点,过点My轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM

①若∠MBC90°,求点P的坐标;

②若△PQB的面积为,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知DCFP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG

(1)说明:DCAB

(2)求∠PFH的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,∠A30°,AB4,点D在直线BC上,EAC上,且ACCDDEAB

1)如图,将△ECD沿CB方向平移,使点E落在AB上,得△E1C1D1,求平移的距离;

2)如图,将△ECD绕点C逆时针旋转,使点E落在AB上,得△E2CD2,求旋转角∠DCD2的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,菱形OABCOC边落在x轴上,AOC=60°OA=60.若菱形OABC内部(边界及顶点除外)的一格点Pxy)满足:x2y2=90x90y,就称格点P好点,则菱形OABC内部好点的个数为(  )

(注:所谓格点,是指在平面直角坐标系中横、纵坐标均为整数的点.)

A. 145 B. 146 C. 147 D. 148

查看答案和解析>>

同步练习册答案